Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction media acids

Masked P-dicarbonyl systems (Mke (alkoxymethylene)malonates or -cyanoacetates) can also be used as 1,3-biselectrophiles in the Pinner cyclocondensation. As the reaction of (ethoxymethylene)cyanoacetate and acetamidine demonstrates, the cycHzation of the primary product 21 can be directed by the reaction medium Acid medium favors... [Pg.467]

Isopropylidene and benzylidene hydrazones of selenazole unsubstituted in the 5-position react with p-nitrosodimethylanilines or p-nitrosodiethyl-anilines when heated in organic solvents in the presence of acetic acid or pyridine (49). Highly colored crystalline 2-hydrazono-5-(p-dialkylamino-phenylimino)selenazoles are recovered from the reaction medium (Table X-10). [Pg.250]

According to Le Chatelier s principle, a system at equilibrium adjusts so as to mini mize any stress applied to it When the concentration of water is increased the system responds by consuming water This means that proportionally more alkene is converted to alcohol the position of equilibrium shifts to the right Thus when we wish to pre pare an alcohol from an alkene we employ a reaction medium m which the molar con centration of water is high—dilute sulfuric acid for example... [Pg.249]

In general ketones are more stable than their enol precursors and are the products actually isolated when alkynes undergo acid catalyzed hydration The standard method for alkyne hydration employs aqueous sulfuric acid as the reaction medium and mer cury(II) sulfate or mercury(II) oxide as a catalyst... [Pg.380]

Under acidic conditions, furfuryl alcohol polymerizes to black polymers, which eventually become crosslinked and insoluble in the reaction medium. The reaction can be very violent and extreme care must be taken when furfuryl alcohol is mixed with any strong Lewis acid or Brn nstad acid. Copolymer resins are formed with phenoHc compounds, formaldehyde and/or other aldehydes. In dilute aqueous acid, the predominant reaction is a ring opening hydrolysis to form levulinic acid [123-76-2] (52). In acidic alcohoHc media, levulinic esters are formed. The mechanism for this unusual reaction in which the hydroxymethyl group of furfuryl alcohol is converted to the terminal methyl group of levulinic acid has recendy been elucidated (53). [Pg.79]

The reaction rate is increased by using an entraining agent such as hexane, benzene, toluene, or cyclohexane, depending on the reactant alcohol, to remove the water formed. The concentration of water in the reaction medium can be measured, either by means of the Kad-Eischer reagent, or automatically by specific conductance and used as a control of the rate. The specific electrical conductance of acetic acid containing small amounts of water is given in Table 6. [Pg.66]

Another concentration method involves passing an inert gas such as N2 or CO2 through the reaction medium (12). As the gas passes through, it becomes humidified and carries captured water with it. Most of the energy required for the gas humidification comes from the heat of reaction. An advantage is that expensive drying equipment is not needed. Also, the sulfuric acid mist formed in typical concentrators is minimized. Du Pont uses a similar process in its nitrobenzene production faciUty. [Pg.65]

The residue, which contains Ir, Ru, and Os, is fused with sodium peroxide at 500°C, forming soluble sodium mthenate and sodium osmate. Reaction of these salts with chlorine produces volatile tetroxides, which are separated from the reaction medium by distillation and absorbed into hydrochloric acid. The osmium can then be separated from the mthenium by boiling the chloride solution with nitric acid. Osmium forms volatile osmium tetroxide mthenium remains in solution. Ruthenium and osmium can thus be separately purified and reduced to give the metals. [Pg.168]

V-Trimethyl silyl diethyl amine (TMSDEA) is a stroagly basic silylatiag reageat and is particulady usehil for derivatiziag low molecular weight acids. The reaction by-product, diethylamine, is volatile enough to be easily removed from the reaction medium. [Pg.70]

Liquid sulfur dioxide expands by ca 10% when warmed from 20 to 60°C under pressure. Pure liquid sulfur dioxide is a poor conductor of electricity, but high conductivity solutions of some salts in sulfur dioxide can be made (216). Liquid sulfur dioxide is only slightly miscible with water. The gas is soluble to the extent of 36 volumes pet volume of water at 20°C, but it is very soluble (several hundred volumes per volume of solvent) in a number of organic solvents, eg, acetone, other ketones, and formic acid. Sulfur dioxide is less soluble in nonpolar solvents (215,217,218). The use of sulfur dioxide as a solvent and reaction medium has been reviewed (216,219). [Pg.144]

Liquid Ghromatography/Mass Spectrometry. Increased use of Hquid chromatography/mass spectrometry (Ic/ms) for stmctural identification and trace analysis has become apparent. Thermospray Ic/ms has been used to identify by-products in phenyl isocyanate precolumn derivatization reactions (74). Five compounds resulting from the reaction of phenyUsocyanate and the reaction medium were identified two from a reaction between phenyl isocyanate and methanol, two from the reaction between phenyl isocyanate and water, and one from the polymerisation of phenyl isocyanate. There were also two reports of derivatisation to enhance either the response or stmctural information from thermospray Ic/ms for linoleic acid hpoxygenase metabohtes (75) and for cortisol (76). [Pg.246]

Catalytic hydrogenation of the nitrile function of cyanohydrins can give amines. As in the case of ordinary nitriles, catalytic reduction of cyanohydrins can yield a mixture of primary, secondary, and tertiary amines. Addition of acid or acetic anhydride to the reaction medium minimizes formation of secondary or tertiary amines through formation of the amine salt or acetamide derivative of the primary amine. [Pg.411]

Phenyl-l,2-benzisoxazole (574) was prepared from (573) and sulfuric acid. The inclusion of NaN02 in the reaction medium yielded the acridone (575) in 40 % yield (65RRC1035). [Pg.120]

Other additives that may be incorporated include sodium hydrogen phosphates as buffering agents to stabilise that pH of the reaction medium, lauryl mercaptan or trichlorethylene as chain transfer agents to control molecular weight, a lubricant such as stearic acid and small amounts of an emulsifier such as sodium lauryl sulphate. [Pg.404]

There are three possible isomers and the proportions in which they are formed will depend on the pH of the reaction medium. Under the acid conditions normally employed in novolak manufacture the 2,4 - and 4, 4 -HPM compounds are the main products Figure 23.10). [Pg.640]

A catalyst is defined as a substance that influences the rate or the direction of a chemical reaction without being consumed. Homogeneous catalytic processes are where the catalyst is dissolved in a liquid reaction medium. The varieties of chemical species that may act as homogeneous catalysts include anions, cations, neutral species, enzymes, and association complexes. In acid-base catalysis, one step in the reaction mechanism consists of a proton transfer between the catalyst and the substrate. The protonated reactant species or intermediate further reacts with either another species in the solution or by a decomposition process. Table 1-1 shows typical reactions of an acid-base catalysis. An example of an acid-base catalysis in solution is hydrolysis of esters by acids. [Pg.26]

Two factors of paramount importance in understanding the chemistry of metal-ammonia reductions are the acidity of the reaction medium and the relative rates of all reactions possible with a given combination of reagents. The control or appreciation of these factors permits one to achieve a certain degree of selectivity in metal-ammonia reductions in spite of the vigor of the reducing agents. [Pg.2]

The reduction of a benzenoid ring, except in benzoic acid derivatives, occurs only in the presence of a proton donor having a pKa of 19 or less (pKa of ammonia is about 33). With the exception of the vinyl group, the other functional groups listed above do not require a proton donor of this acidity in order to be reduced, although the course of reduction may then be complex, e.g. as with esters. " Consequently, a variety of functional groups should be capable of selective reduction in the presence of a benzenoid ring if the reaction medium does not contain an acid of pKa <19. A few examples of such selective reductions have been reported in the steroid literature. [Pg.2]

This phenomenon has been ascribed to low solubility of the aldehyde or its chromic acid adduct in the reaction medium. Work up and reoxidation usually leads to the acid footnote... [Pg.272]

Aliphatic carboxylic acids react with sulfur tetrafluonde to give, in addition to 1,1,1-trifluoromethylalkanes, considerable amounts of symmetrical bis(l,l-di-fluoroalkyl)ethers. Yields of the ethers are related to the nature of the acids and to the reaction conditions. The optimum conditions for the formation of the ethers depend on their stability in highly acidic reaction medium and on the reactivity of the acids toward sulfur tetrafluonde Simple unsubstituted acids form the ethers only at low temperatures, whereas longer chain and cycloaliphatic acids give the corresponding ethers at somewhat higher temperatures Halosubstituted acids form the ethers at the relatively high reaction temperatures necessary for these reactions to proceed [203, 204, 205] (equation 101). [Pg.242]

A second way to achieve constancy of a reactant is to make use of a buffer system. If the reaction medium is water and B is either the hydronium ion or the hydroxide ion, use of a pH buffer can hold Cb reasonably constant, provided the buffer capacity is high enough to cope with acids or bases generated in the reaction. The constancy of the pH required depends upon the sensitivity of the analytical method, the extent of reaction followed, and the accuracy desired in the rate constant determination. [Pg.24]

That the rates of many reactions are markedly dependent upon the acidity or alkalinity of the reaction medium has been known for many decades. In this section, the kinetic analysis of reactions in dilute aqueous solution in which pH is the accessible measure of acidity is presented in sufficient detail to allow the experimentalist to interpret data for most of the systems likely to be encountered and to extend the treatment to cases not covered here. This section is based on an earlier discussion.The problem has also been analyzed by Van der Houwen et al. "... [Pg.273]

The Nenitzescu process is presumed to involve an internal oxidation-reduction sequence. Since electron transfer processes, characterized by deep burgundy colored reaction mixtures, may be an important mechanistic aspect, the outcome should be sensitive to the reaction medium. Many solvents have been employed in the Nenitzescu reaction including acetone, methanol, ethanol, benzene, methylene chloride, chloroform, and ethylene chloride however, acetic acid and nitromethane are the most effective solvents for the process. The utility of acetic acid is likely the result of its ability to isomerize the olefinic intermediate (9) to the isomeric (10) capable of providing 5-hydroxyindole derivatives. The reaction of benzoquinone 4 with ethyl 3-aminocinnamate 35 illustrates this effect. ... [Pg.150]

The Pictet-Spengler reaction is an acid-catalyzed intramolecular cyclization of an intermediate imine of 2-arylethylamine, formed by condensation with a carbonyl compound, to give 1,2,3,4-tetrahydroisoquinoline derivatives. This condensation reaction has been studied under acid-catalyzed and superacid-catalyzed conditions, and a linear correlation had been found between the rate of the reaction and the acidity of the reaction medium. Substrates with electron-donating substituents on the aromatic ring cyclize faster than the corresponding unsubstituted compounds, supporting the idea that the cyclization process is involved in the rate-determining step of the reaction. [Pg.470]

Reactions between A -(l-chloroalkyl)pyridinium chlorides 33 and amino acids in organic solvents have a low synthetic value because of the low solubility of the amine partner. A special protocol has been designed and tested in order to circumvent this drawback. Soon after the preparation of the salt, an aqueous solution of the amino acid was introduced in the reaction medium and the two-phase system obtained was heated under reflux for several hours. However, this was not too successful because sulfur dioxide, evolved during the preparation of the salt, was converted into sulfite that acted as an 5-nucleophile. As a result, A -(l-sulfonatoalkyl)pyridinium betaines such as 53 were obtained (Section IV,B,3) (97BSB383). To avoid the formation of such betaines, the salts 33 were isolated and reacted with an aqueous solution of L-cysteine (80) to afford thiazolidine-4-carboxylic acids hydrochlorides 81 (60-80% yields). [Pg.210]


See other pages where Reaction media acids is mentioned: [Pg.505]    [Pg.117]    [Pg.209]    [Pg.1127]    [Pg.341]    [Pg.176]    [Pg.67]    [Pg.156]    [Pg.328]    [Pg.358]    [Pg.25]    [Pg.307]    [Pg.14]    [Pg.425]    [Pg.336]    [Pg.428]    [Pg.22]    [Pg.52]    [Pg.62]    [Pg.579]    [Pg.120]    [Pg.223]    [Pg.229]    [Pg.941]    [Pg.387]    [Pg.205]    [Pg.134]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Amino Acid-Promoted Reactions in IL Media

Exchange reactions in acid media

Fast Chemical Reactions in a Single-phase Reaction Mixture (Neutralisation of Acid and Alkali Media)

Kinetics of reactions in strongly acidic media

Medium, reaction

Methanol oxidation reaction acid media

Reactions in Strongly Acidic Media

Super acidic reaction media

© 2024 chempedia.info