Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms summary

In summary, and in view of the reaction mechanism being necessarily the reverse of that appropriate to sulphonation, it can probably best be summarised as consisting of equilibria (275)-(277) or (275), (276) and (278), viz. [Pg.354]

Mechanism I illustrates an important requirement for reaction mechanisms. Because a mechanism is a summary of events at the molecular level, a mechanism must lead to the correct stoichiometry to be an accurate description of the chemical reaction. The sum of the steps of a mechanism must give the balanced stoichiometric equation for the overall chemical reaction. If it does not, the proposed mechanism must be discarded. In Mechanism I, the net result of two sequential elementary reactions is the observed reaction stoichiometry. [Pg.1051]

The chemistry of the oxidative and nonoxidative photodegradation of poly(vinyl chloride) is reviewed with emphasis on work that has been published since the early 1970 s. Topics covered include the nature of the photoinitiating species, the photoinitiation mechanism, and the structural consequences and reaction mechanism of the overall photodegradation process. Also included is a summary of recent studies on the determination of structural defects in poly(vinyl chloride) by carbon-13 NMR. [Pg.211]

The isotope effect is observed with the hydrogen atom of the formate and not with the hydrogen atom of the water molecule. The result is similar to that observed on ZnO, where the ratedetermining step of the formate decomposition is suggested to be dissociation of the CH bond of the bidentate formate. In summary, the reaction mechanism for the catalytic WGS reaction on Rh/Ce02 is essentially the same as that on ZnO. [Pg.236]

Despite the undeniable synthetic value of the benzannulation reaction of aryl and alkenyl Fischer carbene complexes, the details of its mechanism at the molecular level remain to be ascertained. Indeed, although a relatively large number of theoretical studies have been directed to the study of the molecular and electronic structure of Fischer carbene complexes [22], few studies have been devoted to the analysis of the reaction mechanisms of processes involving this kind of complexes [23-30]. The aim of this work is to present a summary of our theoretical research on the reaction mechanism of the Dotz reaction between ethyne and vinyl-substituted hydroxycarbene species to yield p-hydroxyphenol. [Pg.271]

Several monographs2-5 have detailed discussions dealing with heavy-atom and primary and secondary hydrogen-deuterium kinetic isotope effects. The monograph by Melander and Saunders5 covers the entire area particularly well. For this reason, only a brief summary of the theory of kinetic isotope effects as well as their important uses in the determination of reaction mechanism and transition-state geometry will be presented. [Pg.894]

In summary, preliminary experiments have demonstrated that the efficiency and outcome of electron ionization is influenced by molecular orientation. That is, the magnitude of the electron impact ionization cross section depends on the spatial orientation of the molecule widi respect to the electron projectile. The ionization efficiency is lowest for electron impact on the negative end of the molecular dipole. In addition, the mass spectrum is orientation-dependent for example, in the ionization of CH3CI the ratio CHjCriCHj depends on the molecular orientation. There are both similarities in and differences between the effect of orientation on electron transfer (as an elementary step in the harpoon mechanism) and electron impact ionization, but there is a substantial effect in both cases. It seems likely that other types of particle interactions, for example, free-radical chemistry and ion-molecule chemistry, may also exhibit a dependence on relative spatial orientation. The information emerging from these studies should contribute one more perspective to our view of particle interactions and eventually to a deeper understanding of complex chemical and biological reaction mechanisms. [Pg.37]

In summary, gas-phase reactions between aldehydes and NOj occur readily and with strong exothermicity. The rate of reaction is largely dependent on the alde-hyde/N02 mixture ratio, and is increased with increasing NO2 concentration for aldehyde-rich mixtures. On the other hand, no appreciable gas-phase reactions involving NO are likely to occur below 1200 K. The overall chemical reaction involving NO appears to be third order, which impUes that it is sensitive to pressure. The reactions discussed above are important in understanding the gas-phase reaction mechanisms of nitropolymer propellants. [Pg.131]

There is no doubt that studies for the establishment of new classes of mechanisms possessing an unique and stable steady state are essential and promising. On the other hand, it is of interest to construct a criterion for uniqueness and multiplicity that would permit us to analyze any reaction mechanism. An important contribution here has been made by Ivanova [5]. Using the Clark approach [59], she has formulated sufficiently general conditions for the uniqueness of steady states in a balance polyhedron in terms of the graph theory. In accordance with ref. 5 we will present a brief summary of these results. As before, we proceed from the validity of the law of mass action and its analog, the law of acting surfaces. Let us also assume that a linear law of conservation is unique (the law of conservation of the amount of catalyst). [Pg.177]

The purpose of this chapter is not to present again the material that is already available in a number of kinetics books and monographs.1 17 Instead, only a brief summary of the fundamentals will be given, followed by examples from the literature to demonstrate the scope, usefulness, and special features of a kinetic approach to reaction mechanisms. [Pg.367]

Near the end of this study guide you will find additional sections that may help you to study for the final examination in the course. The SUMMARY OF SYNTHETIC METHODS lists the important ways to synthesize each class of compounds discussed in the text. It is followed by the SUMMARY OF REACTION MECHANISMS. Both of these sections have references to appropriate portions of the text, in case you feel that further review is necessary. Finally, you will find two lists of sample test questions. The first deals with synthesis, and the second is a list of multiple-choice questions. Both of these sets should help you prepare for examinations. [Pg.419]

Carbonate minerals are among the most chemically reactive common minerals under Earth surface conditions. Many important features of carbonate mineral behavior in sediments and during diagenesis are a result of their unique kinetics of dissolution and precipitation. Although the reaction kinetics of several carbonate minerals have been investigated, the vast majority of studies have focused on calcite and aragonite. Before examining data and models for calcium carbonate dissolution and precipitation reactions in aqueous solutions, a brief summary of the major concepts involved will be presented. Here we will not deal with the details of proposed reaction mechanisms and the associated complex rate equations. These have been examined in extensive review articles (e.g., Plummer et al., 1979 Morse, 1983) and where appropriate will be developed in later chapters. [Pg.72]

As already mentioned, also for the other oxygenated Cl compounds, i.e. formaldehyde [118, 138-147] and methanol [148-154], as well as for larger organic molecules, dynamic instabilities are reported. Many of them are compiled in Ref. [154], for formaldehyde oxidation on Rh and Pt [147] and methanol oxidation on Pt [155] the oscillations could be clearly identified as HN-NDR type oscillations. However, in view of the number of reaction steps involved in these oxidation reactions and of the possible complexity of the interaction of the supporting electrolyte with the dynamics even in the much simpler formic acid oxidation, it is not astonishing that any quantitative considerations should still be missing. There are some attempts to qualitatively explain the observed phenomena with reaction mechanisms that go beyond the simple dual-path model described above. However, at the time being, they are quite speculative. Therefore I shall not discuss them in more detail in this article. A summary of these works can be found in [156],... [Pg.142]

First-Order Elimination The E1 Reaction 258 Key Mechanism 6-8 The E1 Reaction 258 Mechanism 6-9 Rearrangement in an E1 Reaction 261 Summary Carbocation Reactions 262 6-18 Positional Orientation of Elimination Zaitsev s Rule 263 6-19 Second-Order Elimination The E2 Reaction 265 Key Mechanism 6-10 The E2 Reaction 266 6-20 Stereochemistry of the E2 Reaction 267... [Pg.9]

Alkene Synthesis by High-Temperature Industrial Methods 315 Problem-Solving Strategy Proposing Reaction Mechanisms 316 Summary Methods for Synthesis of Alkenes 320 EssentialTerms 322 Study Problems 323... [Pg.9]

Key Mechanism 10-1 Grignard Reactions 443 Summary Grignard Reactions 450 10-10 Side Reactions of Organometallic Reagents Reduction of Alkyl Halides 451... [Pg.11]

Fersht A (1985) Enzyme Structure and Mechanism, 2nd ed. Freeman, New York. Fromm HJ (1979) Summary of kinetic reaction mechanisms. In Methods in Enzymol-ogy, Vol. 63A, DL Punch, Ed. Academic Press, Orlando, FL. [Pg.91]

Chapter 1 presents a short history of the held of free radical chemistry. Building on a few earlier summaries in monographs that are now a bit dated, this chapter covers more modem developments in radical reactions, mechanisms, and physical methods since... [Pg.391]


See other pages where Reaction mechanisms summary is mentioned: [Pg.178]    [Pg.224]    [Pg.299]    [Pg.211]    [Pg.212]    [Pg.5]    [Pg.51]    [Pg.216]    [Pg.368]    [Pg.28]    [Pg.260]    [Pg.97]    [Pg.408]    [Pg.329]    [Pg.375]    [Pg.376]    [Pg.377]    [Pg.378]    [Pg.379]    [Pg.434]    [Pg.295]    [Pg.347]    [Pg.823]    [Pg.119]    [Pg.96]    [Pg.2]   
See also in sourсe #XX -- [ Pg.561 , Pg.615 ]




SEARCH



A Summary of Organic Reaction Mechanisms

Mechanism summary

Reaction summary

Summary of Reaction Mechanisms

© 2024 chempedia.info