Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanism polar reactions

Some systematic studies on the different reaction schemes and how they are realized in organic reactions were performed some time ago [18]. Reactions used in organic synthesis were analyzed thoroughly in order to identify which reaction schemes occur. The analysis was restricted to reactions that shift electrons in pairs, as either a bonding or a free electron pair. Thus, only polar or heteiolytic and concerted reactions were considered. However, it must be emphasized that the reaction schemes list only the overall change in the distribution of bonds and ftee electron pairs, and make no specific statements on a reaction mechanism. Thus, reactions that proceed mechanistically through homolysis might be included in the overall reaction scheme. [Pg.188]

A full description of how a reaction occurs is called its mechanism. There are two general kinds of mechanisms by which reactions take place radical mechanisms and polar mechanisms. Polar reactions, the more common type, occur because of an attractive interaction between a nucleophilic (electron-rich) site in one molecule and an electrophilic (electron-poor) site in another molecule. A bond is formed in a polar reaction when the nucleophile donates an electron pair to the electrophile. This movement of electrons is indicated by a curved arrow showing the direction of electron travel from the nucleophile to... [Pg.165]

Most organic reactions take place by polar mechanisms, in which a nucleophile donates two electrons to an electrophile in forming a new bond. Other reactions take place by radical mechanisms, in which each of two reactants donates one electron in forming a new bond. Both kinds of reactions occur frequently in the laboratory and in living organisms. Less common, however, is the third major class of organic reaction mechanisms—pericyclic reactions. [Pg.1178]

Polarization Transfers and Reaction Mechanisms. Polarization transfers include the previously mentioned electron-nuclear Over-hauser effect and the nuclear-nuclear Overhauser effect. In this section we will discuss only electron-electron polarization transfer via a secondary chemical reaction involving a primary polarized radical. Again we shall use the photoreduction of quinone (t-butyl-p-benzoquinone) as an example. In solvent containing isopropanol, reaction of triplet quinone by phenols leads to two structural isomers, radicals I and II ... [Pg.333]

There are four basic types of organic reaction mechanisms—polar, free-radical, pericyclic, and metal-catalyzed or mediated. [Pg.26]

Solvent Effects on the Rate of Substitution by the S 2 Mechanism Polar solvents are required m typical bimolecular substitutions because ionic substances such as the sodium and potassium salts cited earlier m Table 8 1 are not sufficiently soluble m nonpolar solvents to give a high enough concentration of the nucleophile to allow the reaction to occur at a rapid rate Other than the requirement that the solvent be polar enough to dis solve ionic compounds however the effect of solvent polarity on the rate of 8 2 reactions IS small What is most important is whether or not the polar solvent is protic or aprotic Water (HOH) alcohols (ROH) and carboxylic acids (RCO2H) are classified as polar protic solvents they all have OH groups that allow them to form hydrogen bonds... [Pg.346]

The first three chapters discuss fundamental bonding theory, stereochemistry, and conformation, respectively. Chapter 4 discusses the means of study and description of reaction mechanisms. Chapter 9 focuses on aromaticity and aromatic stabilization and can be used at an earlier stage of a course if an instructor desires to do so. The other chapters discuss specific mechanistic types, including nucleophilic substitution, polar additions and eliminations, carbon acids and enolates, carbonyl chemistry, aromatic substitution, concerted reactions, free-radical reactions, and photochemistry. [Pg.830]

A generally applicable reaction scheme naturally cannot be given. The reaction mechanism of one particular carbinolamine with a particular reagent can depend on the reaction conditions in nonpolar solvents, the nondissociated carbinolamine obviously reacts (Sj 2 mechanism). In polar solvents, on the other hand, the mesomeric cation reacts (S l mechanism). Formally all these reactions belong to the general class of aminomethylation. The reaction products can be considered to be Mannich bases. ... [Pg.187]

The change in orientation was attributed to the occurrence of two mechanisms, a polar reaction occurring at lower temperatures on the surface of the vessel, and a radical reaction occurring at higher temperatures. ... [Pg.171]

In absence of oxygen some hydrogen does manage to evolve and polarize the cathode to some extent. However, if oxygen is present, this polarization does not occur as discussed earlier, and results in accelerated corrosion attack. Hydrogen sulfide ionizes in two main stages when dissolved in fluid. The reactions mechanisms are... [Pg.1307]

Using Curved Arrows in Polar Reaction Mechanisms 149... [Pg.149]

Before beginning a detailed discussion of alkene reactions, let s review briefly some conclusions from the previous chapter. We said in Section 5.5 that alkenes behave as nucleophiles (Lewis bases) in polar reactions. The carbon-carbon double bond is electron-rich and can donate a pair of electrons to an electrophile (Lewis acid), for example, reaction of 2-methylpropene with HBr yields 2-bromo-2-methylpropane. A careful study of this and similar reactions by Christopher Ingold and others in the 1930s led to the generally accepted mechanism shown in Figure 6.7 for electrophilic addition reactions. [Pg.188]

Historically, ethylene potymerization was carried out at high pressure (1000-3000 atm) and high temperature (100-250 °C) in the presence of a catalyst such as benzoyl peroxide, although other catalysts and reaction conditions are now more often used. The key step is the addition of a radical to the ethylene double bond, a reaction similar in many respects to what takes place in the addition of an electrophile. In writing the mechanism, recall that a curved half-arrow, or "fishhook" A, is used to show the movement of a single electron, as opposed to the full curved arrow used to show the movement of an electron pair in a polar reaction. [Pg.240]

Jones and coworkers200 found that a variety of sulphenic acids may be generated by thermolysis of the readily available /J-cyanosulphoxides (equation 81) and observed their highly regiospecific addition also to non-conjugated alkynes (Table 12). As expected for a pericyclic mechanism, the reaction afforded the product of a stereospecific cis-addition. However, the regioselectivity of the addition suggests that the partial carbon-sulphur bond in the transition state 148 is polarized in such a way that the carbon atom has some cationic character (equation 82). [Pg.270]

Although the actual reaction mechanism of hydrosilation is not very clear, it is very well established that the important variables include the catalyst type and concentration, structure of the olefinic compound, reaction temperature and the solvent. used 1,4, J). Chloroplatinic acid (H2PtCl6 6 H20) is the most frequently used catalyst, usually in the form of a solution in isopropyl alcohol mixed with a polar solvent, such as diglyme or tetrahydrofuran S2). Other catalysts include rhodium, palladium, ruthenium, nickel and cobalt complexes as well as various organic peroxides, UV and y radiation. The efficiency of the catalyst used usually depends on many factors, including ligands on the platinum, the type and nature of the silane (or siloxane) and the olefinic compound used. For example in the chloroplatinic acid catalyzed hydrosilation of olefinic compounds, the reactivity is often observed to be proportional to the electron density on the alkene. Steric hindrance usually decreases the rate of... [Pg.14]

After the discovery of the remarkable acceleration of some Diels Alder reactions performed in water, a number of polar non-aqueous solvents and their salty solutions were investigated as reaction medium. This revolutionized the concept that the Diels-Alder reaction is quite insensitive to the effect of the medium and emphasized that a careful choice of the solvent is crucial for the success of the reaction. The polarity of the reaction medium is an important variable which also provides some insights into the mechanism of the reaction. If the reaction rate increases by using a polar medium, this means that the transition state probably has polar character, while the absence of a solvent effect is generally related to an uncharged transition state. [Pg.268]

Other possibilities (e.g., Overhauser effects) exist for the complication of the patterns of polarization predicted by the simple theory. Interesting transienf. splittings have been observed in polarized F-spectra (Bethell et al, 1972a, b). Nevertheless, straightforward application of the simple rules seems to yield reliable conclusions in most cases. Clearly, however, it is unwise to rely on CIDNP results alone in studies of organic reaction mechanisms other information is invariably necessary to ensure that the correct interpretation is chosen from among the several possibilities which CIDNP may suggest. [Pg.82]

The low reactivity of alkyl and/or phenyl substituted organosilanes in reduction processes can be ameliorated in the presence of a catalytic amount of alkanethiols. The reaction mechanism is reported in Scheme 5 and shows that alkyl radicals abstract hydrogen from thiols and the resulting thiyl radical abstracts hydrogen from the silane. This procedure, which was coined polarity-reversal catalysis, has been applied to dehalogenation, deoxygenation, and desulfurization reactions.For example, 1-bromoadamantane is quantitatively reduced with 2 equiv of triethylsilane in the presence of a catalytic amount of ferf-dodecanethiol. [Pg.136]

Electrochemical methods allowed to shed light on the different reaction mechanisms, both in homogeneous and heterogeneous (Ag20 promoted) systems. Furthermore, electroreduction reverses the C-Br bond polarity, allowing the formation of a C-C bond with an electrophile (f.ex. CO2). [Pg.169]

In each case the mechanism involves generation of an aryl radical from a covalent azo compound. In acid solution diazonium salts are ionic and their reactions are polar. When they cleave, the product is an aryl cation (see p. 852). However, in neutral or basic solution, diazonium ions are converted to covalent compounds, and these cleave to give free radicals ... [Pg.929]

The importance of solvation on reaction surfaces is evident in striking medium dependence of reaction rates, particularly for polar reactions, and in variations of product distributions as for methyl formate discussed above and of relative reactivities (18,26). Thus, in order to obtain a molecular level understanding of the influence of solvation on the energetics and courses of reactions, we have carried out statistical mechanics simulations that have yielded free energy of activation profiles (30) for several organic reactions in solution (11.18.19.31. ... [Pg.211]


See other pages where Reaction mechanism polar reactions is mentioned: [Pg.143]    [Pg.143]    [Pg.265]    [Pg.89]    [Pg.605]    [Pg.358]    [Pg.153]    [Pg.236]    [Pg.315]    [Pg.166]    [Pg.1292]    [Pg.1313]    [Pg.29]    [Pg.3]    [Pg.66]    [Pg.66]    [Pg.19]   
See also in sourсe #XX -- [ Pg.203 , Pg.204 ]




SEARCH



Mechanical polarization

Polar mechanisms

Polar reaction mechanisms

Polarization mechanism

Reaction polarity

© 2024 chempedia.info