Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms definition

Reaction mechanism, definition, 4, 12 Reaction order apparent, 7 defined, 5... [Pg.280]

The characterization of the geometric aspects of a reaction mechanism (definition of the RC, geometry of TS, intermediary complexes, etc.) performed on the basis of in vacuo calculations alone is a risky strategy. It is by far safer to rely on methods giving G (R) directly. This is why we consider it advisable to use accurate continuum methods or combined QM/MM simulations, where the QM part is treated at a sufficient degree of accuracy, as the hybrid QM/MM description of the solute can give. [Pg.83]

The total concentration or amount of chlorine-based oxidants is often expressed as available chorine or less frequendy as active chlorine. Available chlorine is the equivalent concentration or amount of Cl needed to make the oxidant according to equations 1—4. Active chlorine is the equivalent concentration or amount of Cl atoms that can accept two electrons. This is a convention, not a description of the reaction mechanism of the oxidant. Because Cl only accepts two electrons as does HOCl and monochloramines, it only has one active Cl atom according to the definition. Thus the active chlorine is always one-half of the available chlorine. The available chlorine is usually measured by iodomettic titration (7,8). The weight of available chlorine can also be calculated by equation 5. [Pg.142]

Mechanism Several possible pathways for the reaction have been proposed by Hasek et alP and by Martin and Kagan, one of which is presented here. It takes cognizance of the fact that a significant concentration of hydrogen fluoride is essential for the reaction. Since definite interaction or compound formation between covalent fluorides and sulfur tetrafluoride is known to... [Pg.461]

The importance of dilfusion in a tubular reactor is determined by a dimensionless parameter, SiAt/S = QIaLKuB ), which is the molecular diffusivity of component A scaled by the tube size and flow rate. If SiAtlB is small, then the elfects of dilfusion will be small, although the definition of small will depend on the specific reaction mechanism. Merrill and Hamrin studied the elfects of dilfusion on first-order reactions and concluded that molecular diffusion can be ignored in reactor design calculations if... [Pg.265]

The necessity of the statistical approach has to be stressed once more. Any statement in this topic has a definitely statistical character and is valid only with a certain probability and in certain range of validity, limited as to the structural conditions and as to the temperature region. In fact, all chemical conceptions can break dovra when the temperature is changed too much. The isokinetic relationship, when significantly proved, can help in defining the term reaction series it can be considered a necessary but not sufficient condition of a common reaction mechanism and in any case is a necessary presumption for any linear free energy relationship. Hence, it does not at all detract from kinetic measurements at different temperatures on the contrary, it gives them still more importance. [Pg.473]

It is only since 1980 that in situ spectroscopic techniques have been developed to obtain identification of the adsorbed intermediates and hence of reliable reaction mechanisms. These new infrared spectroscopic in situ techniques, such as electrochemically modulated infrared reflectance spectroscopy (EMIRS), which uses a dispersive spectrometer, Fourier transform infrared reflectance spectroscopy, or a subtractively normalized interfacial Fourier transform infrared reflectance spectroscopy (SNIFTIRS), have provided definitive proof for the presence of strongly adsorbed species (mainly adsorbed carbon monoxide) acting as catalytic poisons. " " Even though this chapter is not devoted to the description of in situ infrared techniques, it is useful to briefly note the advantages and limitations of such spectroscopic methods. [Pg.76]

The textbook definition of a reactive intermediate is a short-lived, high-energy, highly reactive molecule that determines the outcome of a chemical reaction. Well-known examples are radicals and carbenes such species cannot be isolated in general, but are usually postulated as part of a reaction mechanism, and evidence for their existence is usually indirect. In thermal reactivity, for example, the Wheland intermediate (Scheme 9.1) is a key intermediate in aromatic substitution. [Pg.379]

Reaction mechanisms in chemistry are often written as a sequence of chemical structures, and such structures are referred to as reactive intermediates. Indeed, these intermediates often correspond to local minima on the potential energy curve—as shown in Figure 9.1—but need not do so, and the definition of a reactive intermediate... [Pg.379]

This chapter treats the descriptions of the molecular events that lead to the kinetic phenomena that one observes in the laboratory. These events are referred to as the mechanism of the reaction. The chapter begins with definitions of the various terms that are basic to the concept of reaction mechanisms, indicates how elementary events may be combined to yield a description that is consistent with observed macroscopic phenomena, and discusses some of the techniques that may be used to elucidate the mechanism of a reaction. Finally, two basic molecular theories of chemical kinetics are discussed—the kinetic theory of gases and the transition state theory. The determination of a reaction mechanism is a much more complex problem than that of obtaining an accurate rate expression, and the well-educated chemical engineer should have a knowledge of and an appreciation for some of the techniques used in such studies. [Pg.76]

Angstrom units, definition, 128 Anthracene, carcinogenic activity, 45 Anthracenedihydrodiols, synthesis, 45 Arylnitrones, reaction mechanism, 363f... [Pg.400]

Nucleophilic attack at C-5 has been proposed as a reaction mechanism for a number of ring transformations and the instability of the parent compound toward alkalis probably involves initial attack at this carbon. Since the publication of CHEC-II(1996), there have been no definitive reports of nucleophilic attack at ring carbon atoms. [Pg.494]

The chemical behavior of ions, ion pairs, and polarizable molecules partakes of the same indistinctness as the definitions of these species. Any attempt to make a complete catalog of the reactions of ions will almost certainly include borderline reactions whose intermediates are in fact ion-pairs or even covalent molecules. For many purposes the identification of a reaction as carbonium ion-like, or what the Germans would call Krypto-ionenreaktion, is as useful as the certain knowledge that the intermediate is actually a carbonium ion. Many of the ionic reaction mechanisms in the literature do not represent actual free ions and were not so intended by their authors. The ionic representation is often merely a convenient simplification if it is an oversimplification it is one that is easily rectified when the pertinent data become available. The value of such approximate mechanisms is that... [Pg.74]

Till about 1959 there appears to be the only book by E.S. Gould (Structure and Mechanism of Organic Chemistry) but the examples mentioned in it are so difficult at several places that they elude the comprehension of even teachers, not to talk of students. Around sixties appeared the book by Jerry March (Advanced Organic Chemistry, Reactions, Mechanism and Structure). It was definitely a much better advance over that of Gould, but it has been made so bulky that its cost has become prohibitive. It adores the racks and shelves of libraries. In view of the above difficulties of teachers and students, the present book has been brought out. [Pg.323]

In this chapter, theoretical studies on various transition metal catalyzed boration reactions have been summarized. The hydroboration of olefins catalyzed by the Wilkinson catalyst was studied most. The oxidative addition of borane to the Rh metal center is commonly believed to be the first step followed by the coordination of olefin. The extensive calculations on the experimentally proposed associative and dissociative reaction pathways do not yield a definitive conclusion on which pathway is preferred. Clearly, the reaction mechanism is a complicated one. It is believed that the properties of the substrate and the nature of ligands in the catalyst together with temperature and solvent affect the reaction pathways significantly. Early transition metal catalyzed hydroboration is believed to involve a G-bond metathesis process because of the difficulty in having an oxidative addition reaction due to less available metal d electrons. [Pg.210]

Dotz reaction is proposed. According to our calculations the addition of the alkyne molecule to the carbene complex takes place before CO loss in the initial steps of the reaction. Further, our study shows that a novel proposal involving a chromahexatriene intermediate entails lower energy barriers and more stable intermediates than the previous reaction mechanisms postulated by Dotz and Casey. The novel findings query revision of the classically assumed paths and put forward that additional experimental and theoretical studies are necessary to definitely unravel the reaction mechanism of this intringuing reaction. [Pg.269]

One should realize that adsorption isotherms are purely descriptions of macroscopic data and do not definitively prove a reaction mechanism. Mechanisms must be gleaned from molecular investigations (e.g., the use of spectroscopic techniques). Thus the conformity of experimental adsorption data to a particular isotherm does not indicate that this is a unique description of the experimental data, and that only adsorption is in operation. [Pg.130]

The main reasons for investigating the rates of solid phase sorption/desorption processes are to (1) determine how rapidly reactions attain equilibrium, and (2) infer information on sorption/desorption reaction mechanisms. One of the important aspects of chemical kinetics is the establishment of a rate law. By definition, a rate law is a differential equation [108] as shown in Eq. (32) ... [Pg.184]

The relevance of this mechanism to mammalian enzymes is an important question, but we are not aware of any detailed study that affords a definitive answer. Proof that reactions of hydrolytic dehalogenation ofhaloalkyl groups occur in animals is presented in the next subsection, but much remains to be discovered regarding the enzymes involved or the reaction mechanisms. Furthermore, nonenzymatic reactions remain a distinct possibility when the C-atom bearing the halogen is sufficiently electrophilic, as seen, e.g., with (2-chloroethyl)amino derivatives (see Sect. 11.4.2). [Pg.694]

However, the situation is more complicated than this. Although there now seems to be consistency between interpretation and definitions, there is still a problem arising from the definition of Km. From the reaction mechanism (34)... [Pg.108]

The observation of hidden reactions during solvolysis, through the use of chiral or isotopically labeled substrates has created considerable excitement in communities interested in the mechanisms of nonenzymatic and enzyme catalyzed reactions. These hidden reactions reveal something interesting about reaction mechanisms. However, chemists and biochemists are still working on the problem of extracting simple and definitive conclusions from analysis of data for these isomerization reactions. [Pg.321]

When chemists investigate the mechanism of a reaction, they are not so lucky. Determining the mechanism of a chemical reaction is a bit like figuring out how a clock works just by looking at its face and hands. For this reason, reaction mechanisms are proposed rather than definitively stated. Much of the experimental evidence that is obtained to support a mechanism is indirect. Researchers need a lot of creativity as they propose and test mechanisms. [Pg.298]

The catalase-peroxidases present other challenges. More than 20 sequences are available, and interest in the enzyme arising from its involvement in the process of antihiotic sensitivity in tuherculosis-causing bacteria has resulted in a considerable body of kinetic and physiological information. Unfortunately, the determination of crystallization conditions and crystals remain an elusive goal, precluding the determination of a crystal structure. Furthermore, the presence of two possible reaction pathways, peroxidatic and catalatic, has complicated a definition of the reaction mechanisms and the identity of catalytic intermediates. There is work here to occupy biochemists for many more years. [Pg.103]

Multisubstrate or multiproduct enzyme-catalyzed reaction mechanisms in which one or more substrates and/ or products bind and/or are released in a random fashion. Note that this definition does not imply that there has to be an equal preference for any particular binding sequence. The flux through the different binding sequences could very easily be different. However, in rapid equilibrium random mechanisms, the flux rates are equivalent. See Multisubstrate Mechanisms... [Pg.603]


See other pages where Reaction mechanisms definition is mentioned: [Pg.3]    [Pg.492]    [Pg.37]    [Pg.6]    [Pg.679]    [Pg.284]    [Pg.101]    [Pg.131]    [Pg.200]    [Pg.257]    [Pg.17]    [Pg.705]    [Pg.281]    [Pg.858]    [Pg.118]    [Pg.141]    [Pg.316]    [Pg.157]    [Pg.2]    [Pg.316]   
See also in sourсe #XX -- [ Pg.252 ]

See also in sourсe #XX -- [ Pg.200 ]

See also in sourсe #XX -- [ Pg.203 , Pg.373 ]




SEARCH



Condensation reactions, definition mechanism

Mechanical, definition

Mechanically definition

Mechanism definition

Reaction definition

© 2024 chempedia.info