Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction general model

Chapter 8 describes a number of generalized CA models, including reversible CA, coupled-map lattices, quantum CA, reaction-diffusion models, immunologically motivated CA models, random Boolean networks, sandpile models (in the context of self-organized criticality), structurally dynamic CA (in which the temporal evolution of the value of individual sites of a lattice are dynamically linked to an evolving lattice structure), and simple CA models of combat. [Pg.19]

The most notable theoretical analysis of the instability problem has been presented by McClure and Hart (M5). These investigators postulated a generalized combustion zone that includes a temperature-dependent and pressure-independent solid-phase reaction zone, and a temperature- and pressure-dependent gas-phase reaction zone. From this general model, Hart... [Pg.53]

A more general model of gas-liquid-particle processes than those that have so far appeared in the literature would, it seems, be of considerable interest as a basis for comparing the reaction-engineering properties of the several types of gas-liquid-particle operations, and as a means for analyzing operations with finite liquid flow (for example, trickle-flow operation and gas-liquid fluidization). [Pg.86]

At this point it is appropriate to discuss the mechanism for ADMET, because ADMET polymerization is more involved than its chain polymerization counterpart— ROMP. Figure 8.6 illustrates the accepted mechanistic pathway which leads to productive metathesis polymerization, as first described by Wagener et al.14a A general model reaction between an a,o>-diene with a metal alkylidene... [Pg.435]

We have put this model into mathematical form. Although we have yet no quantitative predictions, a very general model has been formulated and is described in more detail in Appendix A. We have learned and applied here some lessons from Kilkson s work (17) on interfacial polycondensation although our problem is considerably more difficult, since phase separation occurs during the polymerization at some critical value of a sequence distribution parameter, and not at the start of the reaction. Quantitative results will be presented in a forthcoming pub1ication. [Pg.174]

Solutions were obtained, either analytically or numerically, on a computer. The quenched-reaction, kinetic model considered that the nucleation sequence of reactions evolves to some time (the quenching time) and then promptly halts. Both kinetic models yield a result having the same general form as the statistical model, namely,... [Pg.82]

A general methodology has been developed for the treatment of NMR data of polymer mixtures. The methodology is based on reaction probability models and computer optimization methods, resulting in a family of computer programs called MIXCO. The use of MIXCO programs enabled three components to be resolved from NMR tacticity data of fractionated polybutylene. [Pg.174]

Multi-State Models. In studies of copolymerization kinetics and polymer microstructure, the use of reaction probability models can provide a convenient framework whereby the experimental data can be organized and interpreted, and can also give insight on reaction mechanisms. (1.,2) The models, however, only apply to polymers containing one polymer component. For polymers with mixtures of different components, the one-state simple models cannot be used directly. Generally multi-state models(11) are needed, viz. [Pg.175]

Reaction, diffusion, and catalyst deactivation in a porous catalyst layer are considered. A general model for mass transfer and reaction in a porous particle with an arbitrary geometry can be written as follows ... [Pg.170]

The single catalyst models for initial NO storage/reduction were then extended to include the catalyst composition, as shown by Eqns (5), (6) and (7). This general model included the nominal weight loadings of Pt, Ba, and Fe, in addition to the five reaction... [Pg.344]

When the end groups of the polymers obtained by radical polymerization using certain iniferters still have an iniferter function, such radical polymerization is expected to proceed via a living radical mechanism even in a homogeneous system, i.e.,both the yield and the molecular weight of the polymers produced increase with reaction time. The generalized model is shown in Eq. (18) [16] ... [Pg.84]

The reaction Kd model, as we can see, differs from the general approach in two ways. The activity rather than the concentration of the dissolved species is carried. Distribution coefficients calculated in the traditional manner, therefore, need to be corrected by a factor of the species activity coefficient. The value of K A for Cd++ in mol g-1 can be determined from a K in cm3 g-1 as,... [Pg.139]

In this chapter, we discuss double layer theory and how it can be incorporated into a geochemical model. We will consider hydrous ferric oxide (FeOOH //IFO), which is one of the most important sorbing minerals at low temperature under oxidizing conditions. Sorption by hydrous ferric oxide has been widely studied and Dzombak and Morel (1990) have compiled an internally consistent database of its complexation reactions. The model we develop, however, is general and can be applied equally well to surface complexation with other metal oxides for which a reaction database is available. [Pg.156]

Mathematical models based on physical and chemical laws (e.g., mass and energy balances, thermodynamics, chemical reaction kinetics) are frequently employed in optimization applications (refer to the examples in Chapters 11 through 16). These models are conceptually attractive because a general model for any system size can be developed even before the system is constructed. A detailed exposition of fundamental mathematical models in chemical engineering is beyond our scope here, although we present numerous examples of physiochemical models throughout the book, especially in Chapters 11 to 16. Empirical models, on the other hand, are attractive when a physical model cannot be developed due to limited time or resources. Input-output data are necessary in order to fit unknown coefficients in either type of the model. [Pg.41]

An enantioselective catalyst must fulfill two functions (1) activate the different reactants (activation) and (2) control the stereochemical outcome of the reaction (controlling function). As an accepted general model, it is postulated that this control is achieved by specific interactions between the active centers of the catalyst, the adsorbed substrates, and the adsorbed chiral auxiliary (Figure 14.4). Experience has shown that most substrates that can be transformed in useful enantiomers have an additional functional group that can interact with the chiral active center. [Pg.498]


See other pages where Reaction general model is mentioned: [Pg.3010]    [Pg.764]    [Pg.726]    [Pg.394]    [Pg.329]    [Pg.221]    [Pg.358]    [Pg.413]    [Pg.91]    [Pg.154]    [Pg.831]    [Pg.342]    [Pg.345]    [Pg.348]    [Pg.135]    [Pg.19]    [Pg.200]    [Pg.689]    [Pg.300]    [Pg.285]    [Pg.28]    [Pg.1]    [Pg.230]    [Pg.445]    [Pg.191]    [Pg.312]    [Pg.9]    [Pg.270]    [Pg.142]    [Pg.98]    [Pg.151]    [Pg.156]    [Pg.321]    [Pg.42]   
See also in sourсe #XX -- [ Pg.27 , Pg.28 , Pg.29 , Pg.30 ]




SEARCH



A Generalized Model for Heterogeneous Reactions

A general model of gas—solid reactions

A general stochastic model of surface reactions

Development of a Generalized Kinetic Model for One-Substrate Reactions Under Inhibition

General reactions

Generalization model

Generalized reaction

Model, generalized

© 2024 chempedia.info