Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reacting

Consider the process illustrated in Fig. 1.2. The process requires a reactor to transform the FEED into PRODUCT (Fig. 1.2a). Unfortunately, not all the FEED reacts. Also, part of the FEED reacts to form BYPRODUCT instead of the desired PRODUCT. A... [Pg.3]

An example of such recychng in a parallel reaction system is in the Oxo process for the production of C4 alcohols. Propylene and synthesis gas (a mixture of carbon monoxide and hydrogen) are first reacted to ra- and isobutyraldehydes using a cobalt-based catalyst. Two parallel reactions occur ... [Pg.38]

Heterogeneous catalysts. In heterogeneous catalysis, the catalyst is in a different phase from the reacting species. Most often, the... [Pg.46]

Series reactions occur in which the tert-butyl hydrogen sulfate reacts to unwanted tert-butyl alcohol ... [Pg.52]

As an example of the application of a fixed-bed tubular reactor, consider the production of methanol. Synthesis gas (a mixture of hydrogen, carbon monoxide, and carbon dioxide) is reacted over a copper-based cat dyst. The main reactions are... [Pg.56]

Gas-liquid mixtures are sometimes reacted in packed beds. The gas and the liquid usually flow cocurrently. Such trickle-bed reactors have the advantage that residence times of the liquid are shorter than in countercurrent operation. This can be useful in avoiding unwanted side reactions. [Pg.56]

Fixed-bed noncatalytic reactors. Fixed-bed reactors can be used to react a gas and a solid. For example, hydrogen sulfide can be removed from fuel gases by reaction with ferric oxide ... [Pg.56]

Fluidized-bed catalytic reactors. In fluidized-bed reactors, solid material in the form of fine particles is held in suspension by the upward flow of the reacting fluid. The effect of the rapid motion of the particles is good heat transfer and temperature uniformity. This prevents the formation of the hot spots that can occur with fixed-bed reactors. [Pg.58]

As with distillation, no attempt should be made to carry out any optimization of liquid flow rate, temperature, or pressure at this stage in the design. The separation in absorption is sometimes enhanced by adding a component to the liquid which reacts with the solute. [Pg.84]

Laboratory studies indicate that a hydrogen-toluene ratio of 5 at the reactor inlet is required to prevent excessive coke formation in the reactor. Even with a large excess of hydrogen, the toluene cannot be forced to complete conversion. The laboratory studies indicate that the selectivity (i.e., fraction of toluene reacted which is converted to benzene) is related to the conversion (i.e., fraction of toluene fed which is reacted) according to ... [Pg.110]

Consider again the simple process shown in Fig. 4.4d in which FEED is reacted to PRODUCT. If the process usbs a distillation column as separator, there is a tradeofi" between refiux ratio and the number of plates if the feed and products to the distillation column are fixed, as discussed in Chap. 3 (Fig. 3.7). This, of course, assumes that the reboiler and/or condenser are not heat integrated. If the reboiler and/or condenser are heat integrated, the, tradeoff is quite different from that shown in Fig. 3.7, but we shall return to this point later in Chap. 14. The important thing to note for now is that if the reboiler and condenser are using external utilities, then the tradeoff between reflux ratio and the number of plates does not affect other operations in the flowsheet. It is a local tradeoff. [Pg.239]

Consider again the simple process in Fig. 4.1 in which FEED is reacted to PRODUCT via the reaction... [Pg.241]

The value of PRODUCT formation and the raw materials cost of FEED that reacts to PRODUCT are constant. Alternatively, if the byproduct has no value, the cost of disposal should be included as... [Pg.244]

Consider vinyl chloride production (see Example 2.1). In the oxychlorination reaction step of the process, ethylene, hydrogen chloride, and oxygen are reacted to form dichloroethane ... [Pg.283]

A fiowsheet for this part of the vinyl chloride process is shown in Fig. 10.5. The reactants, ethylene and chlorine, dissolve in circulating liquid dichloroethane and react in solution to form more dichloroethane. Temperature is maintained between 45 and 65°C, and a small amount of ferric chloride is present to catalyze the reaction. The reaction generates considerable heat. [Pg.285]

This problem is solved in the reactor shown in Fig. 10.6. Ethylene and chlorine are introduced into circulating liquid dichloroethane. They dissolve and react to form more dichloroethane. No boiling takes place in the zone where the reactants are introduced or in the zone of reaction. As shown in Fig. 10.6, the reactor has a U-leg in which dichloroethane circulates as a result of gas lift and thermosyphon effects. Ethylene and chlorine are introduced at the bottom of the up-leg, which is under sufficient hydrostatic head to prevent boiling. [Pg.286]

The reactants dissolve and immediately begin to react to form further dichloroethane. The reaction is essentially complete at a point only two-thirds up the rising leg. As the liquid continues to rise, boiling begins, and finally, the vapor-liquid mixture enters the disengagement drum. A very slight excess of ethylene ensures essentially 100 percent conversion of chlorine. [Pg.286]

Fuel-bound NO. is formed at low as well as high temperatures. However, part of the fuel nitrogen is directly reacted to N2. Moreover, N2O and N2O4 are also formed in various reactions and add to the complexity of the formation. It is virtually impossible to calculate a precise value for the NO, emitted by a real combustion device. NO, emissions depend not only on the type of combustion technology but also on its size and the type of fuel used. [Pg.307]

Figure 13.1a shows two possible thermal profiles for exothermic plug-fiow reactors. If the rate of heat removal is low and/or the heat of reaction is high, then the temperature of the reacting stream will increase along the length of the reactor. If the rate of heat removal is high and/or the heat of reaction is low, then the temperature will fall. Under conditions between the two profiles shown in Fig. 13.1a, a maximum can occur in the temperature at an intermediate point between the reactor inlet and exit. [Pg.327]

ANstreams = enthalpy change between feed and product streams AI/react = reaction enthalpy (negative in the case of exothermic reactions)... [Pg.329]

White crystals, m.p. 114" C. Manufactured by reacting aniline with excess ethanoic acid or ethanoic anhydride. Chief use is in the manufacture of dye intermediates such as p-nitro-acetanilide, p-nitroaniline and p-phenylene-diamine, in the manufacture of rubber, and as a peroxide stabilizer. [Pg.10]

Amidines are best made in two stages a nitrile reacts with dry HCl and anhydrous alcohols to give an imidic ester (imino-ether) which yields an amidine with NH3. [Pg.27]


See other pages where Reacting is mentioned: [Pg.4]    [Pg.31]    [Pg.49]    [Pg.49]    [Pg.57]    [Pg.60]    [Pg.105]    [Pg.105]    [Pg.109]    [Pg.281]    [Pg.329]    [Pg.11]    [Pg.14]    [Pg.14]    [Pg.17]    [Pg.18]    [Pg.19]    [Pg.19]    [Pg.19]    [Pg.21]    [Pg.21]    [Pg.22]    [Pg.23]    [Pg.25]    [Pg.25]    [Pg.27]    [Pg.27]    [Pg.28]   
See also in sourсe #XX -- [ Pg.48 , Pg.58 , Pg.105 , Pg.186 , Pg.190 , Pg.292 , Pg.293 ]




SEARCH



REACT

© 2024 chempedia.info