Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface area, reactant

Sufficient DO data were not obtained from basalt-synthetic Grande Ronde groundwater experiments to allow determination of a definitive rate law. A first order kinetic model with respect to DO concentration was assumed. Rate control by diffusion kinetics and by surface-reaction mechanisms result in solution composition cnanges with different surface area and time dependencies (32,39). Therefore, by varying reactant surface area, determination of the proper functional form of the integrated rate equation for basalt-water redox reactions is possible. [Pg.189]

How do the type of reactants, surface area of reactants, concentration of reactants, and catalysts affect the rates of chemical reactions ... [Pg.546]

The rate of reaction is influenced by the following factors nature of reactants, surface area, temperature, concentration of reactants, and the presence of catalysts. [Pg.549]

In order to achieve appreciable macroscopic current densities while maintaining low local microscopic charge and particle flux densities, many battery electrodes that are used in conjunction with liquid electrolytes are produced with porous micro-structures containing very flne particles of the solid reactant materials. This porous structure of high reactant surface area is permeated with the electrolyte. [Pg.423]

In the spiral-wound geometry (also called a jelly roU), the radius of curvature of the electrodes decreases as the radius of the spiral increases, thereby creating a two-dimensional geometry. Spiral-wound geometries have been treated by Evans and White [92] and Podlaha and Cheh [93]. Podlaha and Cheh describe a methodology to simulate a spiral-wound configuration with a one-dimensional model consisting of multiple ceU layers connected by "virtual" current coUectors. They compare simulations of a spiral-wound alkaline ceU to that of a bobbin cell with equivalent total reactant surface area. [Pg.375]

Physical properties affecting catalyst perfoniiance include tlie surface area, pore volume and pore size distribution (section B1.26). These properties regulate tlie tradeoff between tlie rate of tlie catalytic reaction on tlie internal surface and tlie rate of transport (e.g., by diffusion) of tlie reactant molecules into tlie pores and tlie product molecules out of tlie pores tlie higher tlie internal area of tlie catalytic material per unit volume, tlie higher the rate of tlie reaction... [Pg.2702]

Catalyst particles are usually cylindrical in shape because it is convenient and economical to fonii tliem by extmsion—like spaghetti. Otlier shapes may be dictated by tlie need to minimize tlie resistance to transport of reactants and products in tlie pores tlius, tlie goal may be to have a high ratio of external (peripheral) surface area to particle volume and to minimize the average distance from tlie outside surface to tlie particle centre, witliout having particles tliat are so small tliat tlie pressure drop of reactants flowing tlirough tlie reactor will be excessive. [Pg.2702]

M ass Transfer. Mass transfer in a fluidized bed can occur in several ways. Bed-to-surface mass transfer is important in plating appHcations. Transfer from the soHd surface to the gas phase is important in drying, sublimation, and desorption processes. Mass transfer can be the limiting step in a chemical reaction system. In most instances, gas from bubbles, gas voids, or the conveying gas reacts with a soHd reactant or catalyst. In catalytic systems, the surface area of a catalyst can be enormous. Eor Group A particles, surface areas of 5 to over 1000 m /g are possible. [Pg.76]

Model Reactions. Independent measurements of interfacial areas are difficult to obtain in Hquid—gas, Hquid—Hquid, and Hquid—soHd—gas systems. Correlations developed from studies of nonreacting systems maybe satisfactory. Comparisons of reaction rates in reactors of known small interfacial areas, such as falling-film reactors, with the reaction rates in reactors of large but undefined areas can provide an effective measure of such surface areas. Another method is substitution of a model reaction whose kinetics are well estabUshed and where the physical and chemical properties of reactants are similar and limiting mechanisms are comparable. The main advantage of employing a model reaction is the use of easily processed reactants, less severe operating conditions, and simpler equipment. [Pg.516]

Titanium disulfide can also be made by pyrolysis of titanium trisulfide at 550°C. A continuous process based on the reaction between titanium tetrachloride vapor and dry, oxygen-free hydrogen sulfide has been developed at pilot scale (173). The preheated reactants ate fed iato a tubular reactor at approximately 500°C. The product particles comprise orthogonally intersecting hexagonal plates or plate segments and have a relatively high surface area (>4 /g), quite different from the flat platelets produced from the reaction between titanium metal and sulfur vapor. The powder, reported to be stable to... [Pg.133]

A few industrial catalysts have simple compositions, but the typical catalyst is a complex composite made up of several components, illustrated schematically in Figure 9 by a catalyst for ethylene oxidation. Often it consists largely of a porous support or carrier, with the catalyticaHy active components dispersed on the support surface. For example, petroleum refining catalysts used for reforming of naphtha have about 1 wt% Pt and Re on the surface of a transition alumina such as y-Al203 that has a surface area of several hundred square meters per gram. The expensive metal is dispersed as minute particles or clusters so that a large fraction of the atoms are exposed at the surface and accessible to reactants (see Catalysts, supported). [Pg.170]

Reactants must diffuse through the network of pores of a catalyst particle to reach the internal area, and the products must diffuse back. The optimum porosity of a catalyst particle is deterrnined by tradeoffs making the pores smaller increases the surface area and thereby increases the activity of the catalyst, but this gain is offset by the increased resistance to transport in the smaller pores increasing the pore volume to create larger pores for faster transport is compensated by a loss of physical strength. A simple quantitative development (46—48) follows for a first-order, isothermal, irreversible catalytic reaction in a spherical, porous catalyst particle. [Pg.171]

Surface Area. This property is of paramount importance to catalyst performance because in general catalyst activity increases as the surface area of the catalyst increases. However because some reaction rates are strongly dependent on the nature of the stmcture of the catalytic surface, a linear correlation of catalyst activity with surface area should not be expected. As the catalyst surface area increases, for many reactions the selectivity of the catalyst is found to decrease. If the support material is completely inert to the reactants and products, this effect may be diminished somewhat. [Pg.194]

The esterification of -butyl alcohol and oleic acid with a phenol—formaldehydesulfonic acid resin (similar to amberHte IR-100) is essentially second order after an initial slow period (52). The velocity constant is directiy proportional to the surface area of the catalyst per unit weight of reactants. [Pg.376]

Highly active catalysts have been produced by adsorption of lipases onto macroporous acrylate beads, polypropylene particles and phenol-formaldehyde weak anion exchange resins. Protein is bound, presumably essentially as a monolayer, within the pores of the particles. The large surface area of the particles (10m2 g 1) means that substantial amounts of protein can be adsorbed, and the pores are of sufficient size to allow easy access of reactants to this adsorbed protein. [Pg.331]

It is important to distinguish clearly between the surface area of a decomposing solid [i.e. aggregate external boundaries of both reactant and product(s)] measured by adsorption methods and the effective area of the active reaction interface which, in most systems, is an internal structure. The area of the contact zone is of fundamental significance in kinetic studies since its determination would allow the Arrhenius pre-exponential term to be expressed in dimensions of area"1 (as in catalysis). This parameter is, however, inaccessible to direct measurement. Estimates from microscopy cannot identify all those regions which participate in reaction or ascertain the effective roughness factor of observed interfaces. Preferential dissolution of either reactant or product in a suitable solvent prior to area measurement may result in sintering [286]. The problems of identify-... [Pg.28]


See other pages where Surface area, reactant is mentioned: [Pg.375]    [Pg.152]    [Pg.237]    [Pg.1081]    [Pg.1123]    [Pg.375]    [Pg.375]    [Pg.152]    [Pg.237]    [Pg.1081]    [Pg.1123]    [Pg.375]    [Pg.49]    [Pg.1780]    [Pg.2702]    [Pg.2702]    [Pg.79]    [Pg.38]    [Pg.277]    [Pg.514]    [Pg.545]    [Pg.194]    [Pg.195]    [Pg.222]    [Pg.223]    [Pg.522]    [Pg.503]    [Pg.504]    [Pg.282]    [Pg.634]    [Pg.160]    [Pg.161]    [Pg.203]    [Pg.329]    [Pg.9]    [Pg.18]    [Pg.28]    [Pg.161]    [Pg.163]    [Pg.196]   
See also in sourсe #XX -- [ Pg.190 ]




SEARCH



How does the surface area of a solid reactant affect percent yield

© 2024 chempedia.info