Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rates of oxidation

If a compact film growing at a parabolic rate breaks down in some way, which results in a non-protective oxide layer, then the rate of reaction dramatically increases to one which is linear. This combination of parabolic and linear oxidation can be tenned paralinear oxidation. If a non-protective, e.g. porous oxide, is fonned from the start of oxidation, then the rate of oxidation will again be linear, as rapid transport of oxygen tlirough the porous oxide layer to the metal surface occurs. Figure C2.8.7 shows the various growth laws. Parabolic behaviour is desirable whereas linear or breakaway oxidation is often catastrophic for high-temperature materials. [Pg.2729]

Thermal Oxidative Stability. ABS undergoes autoxidation and the kinetic features of the oxygen consumption reaction are consistent with an autocatalytic free-radical chain mechanism. Comparisons of the rate of oxidation of ABS with that of polybutadiene and styrene—acrylonitrile copolymer indicate that the polybutadiene component is significantly more sensitive to oxidation than the thermoplastic component (31—33). Oxidation of polybutadiene under these conditions results in embrittlement of the mbber because of cross-linking such embrittlement of the elastomer in ABS results in the loss of impact resistance. Studies have also indicated that oxidation causes detachment of the grafted styrene—acrylonitrile copolymer from the elastomer which contributes to impact deterioration (34). [Pg.203]

Lead—Calcium—Aluminum Alloys. Lead—calcium alloys can be protected against loss of calcium by addition of aluminum. Aluminum provides a protective oxide skin on molten lead—calcium alloys. Even when scrap is remelted, calcium content is maintained by the presence of 0.02 wt % aluminum. Alloys without aluminum rapidly lose calcium, whereas those that contain 0.03 wt % aluminum exhibit negligible calcium losses, as shown in Figure 8 (10). Even with less than optimum aluminum levels, the rate of oxidation is lower than that of aluminum-free alloys. [Pg.59]

High Temperature Corrosion. The rate of oxidation of magnesium adoys increases with time and temperature. Additions of berydium, cerium [7440-45-17, lanthanum [7439-91-0] or yttrium as adoying elements reduce the oxidation rate at elevated temperatures. Sulfur dioxide, ammonium fluoroborate [13826-83-0] as wed as sulfur hexafluoride inhibit oxidation at elevated temperatures. [Pg.334]

Fresh butane mixed with recycled gas encounters freshly oxidized catalyst at the bottom of the transport-bed reactor and is oxidized to maleic anhydride and CO during its passage up the reactor. Catalyst densities (80 160 kg/m ) in the transport-bed reactor are substantially lower than the catalyst density in a typical fluidized-bed reactor (480 640 kg/m ) (109). The gas flow pattern in the riser is nearly plug flow which avoids the negative effect of backmixing on reaction selectivity. Reduced catalyst is separated from the reaction products by cyclones and is further stripped of products and reactants in a separate stripping vessel. The reduced catalyst is reoxidized in a separate fluidized-bed oxidizer where the exothermic heat of reaction is removed by steam cods. The rate of reoxidation of the VPO catalyst is slower than the rate of oxidation of butane, and consequently residence times are longer in the oxidizer than in the transport-bed reactor. [Pg.457]

Heat. As expected, heat accelerates oxidation (33). Therefore, the effects described previously are observed sooner and are more severe as temperature is increased. Because oxidation is a chemical reaction, an increase of 10°C in temperature almost doubles the rate of oxidation. [Pg.246]

Rubber Chemicals. Sodium nitrite is an important raw material in the manufacture of mbber processing chemicals. Accelerators, retarders, antioxidants (qv), and antiozonants (qv) are the types of compounds made using sodium nitrite. Accelerators, eg, thiuram [137-26-8J, greatly increase the rate of vulcaniza tion and lead to marked improvement in mbber quaUty. Retarders, on the other hand (eg, /V-nitrosodiphenylamine [156-10-5]) delay the onset of vulcanization but do not inhibit the subsequent process rate. Antioxidants and antiozonants, sometimes referred to as antidegradants, serve to slow the rate of oxidation by acting as chain stoppers, transfer agents, and peroxide decomposers. A commonly used antioxidant is A/,AT-disubstituted Nphenylenediamine which can employ sodium nitrite in its manufacture (see Rubber chemicals). [Pg.200]

Metal-Catalyzed Oxidation. Trace quantities of transition metal ions catalyze the decomposition of hydroperoxides to radical species and greatiy accelerate the rate of oxidation. Most effective are those metal ions that undergo one-electron transfer reactions, eg, copper, iron, cobalt, and manganese ions (9). The metal catalyst is an active hydroperoxide decomposer in both its higher and its lower oxidation states. In the overall reaction, two molecules of hydroperoxide decompose to peroxy and alkoxy radicals (eq. 5). [Pg.223]

Thermally induced homolytic decomposition of peroxides and hydroperoxides to free radicals (eqs. 2—4) increases the rate of oxidation. Decomposition to nonradical species removes hydroperoxides as potential sources of oxidation initiators. Most peroxide decomposers are derived from divalent sulfur and trivalent phosphoms. [Pg.227]

The vapor cloud of evaporated droplets bums like a diffusion flame in the turbulent state rather than as individual droplets. In the core of the spray, where droplets are evaporating, a rich mixture exists and soot formation occurs. Surrounding this core is a rich mixture zone where CO production is high and a flame front exists. Air entrainment completes the combustion, oxidizing CO to CO2 and burning the soot. Soot bumup releases radiant energy and controls flame emissivity. The relatively slow rate of soot burning compared with the rate of oxidation of CO and unbumed hydrocarbons leads to smoke formation. This model of a diffusion-controlled primary flame zone makes it possible to relate fuel chemistry to the behavior of fuels in combustors (7). [Pg.412]

The temperature in the hottest part of the kiln is closely controlled using automatic equipment and a radiation pyrometer and generally is kept at about 1100—1150°C (see Temperature measurement). Time of passage is about four hours, varying with the kiln mix being used. The rate of oxidation increases with temperature. However, the maximum temperature is limited by the tendency of the calcine to become sticky and form rings or balls in the kiln, by... [Pg.137]

The stmcture of residual char particles after devolatilization depends on the nature of the coal and the pyrolysis conditions such as heating rate, peak temperature, soak time at the peak temperature, gaseous environment, and the pressure of the system (72). The oxidation rate of the chat is primarily influenced by the physical and chemical nature of the chat, the rate of diffusion and the nature of the reactant and product gases, and the temperature and pressure of the operating system. The physical and chemical characteristics that influence the rate of oxidation ate chemical stmctural variations, such as the... [Pg.521]

The critical properties of water are 374°C (705°F) and 218 atm (3,205 psi). Above this condition a heterogeneous mixture of water, organic-compounds, and oxygen may become homogeneous. Then the rate of oxidation may be considerably accelerated because of (1) elimination of diffusional resistances, (2) increase of oxygen concentration by rea-... [Pg.2100]

Significant distinction in rate constants of MDASA and TPASA oxidation reactions by periodate ions at the presence of individual catalysts allow to use them for differential determination of platinum metals in complex mixtures. The range of concentration rations iridium (IV) rhodium (III) is determined where sinergetic effect of concentration of one catalyst on the rate of oxidation MDASA and TPASA by periodate ions at the presence of another is not observed. Optimal conditions of iridium (IV) and rhodium (III) determination are established at theirs simultaneous presence. Indicative oxidation reactions of MDASA and TPASA are applied to differential determination of iridium (IV) and rhodium (III) in artificial mixtures and a complex industrial sample by the method of the proportional equations. [Pg.37]

The latter reaction only occurs in tire presence of water vapour, which increases the rate of oxidation markedly. [Pg.55]

The kinetics of the oxidation of CO on a platinum surface indicate that CO and oxygen are adsorbed to about the same extent. The rate of oxidation depends on the oxygen partial pressure when CO is in excess, and on tire CO partial pressure when oxygen is in excess. [Pg.139]

Here, tg = 1 and Iq2- is negligible, and thus the rate of oxidation is determined by the partial conductivity due to the Ni2+ ions. [Pg.262]

The equation for the rate of oxidation of the transition metals at high temperatures, which form a solid solution of oxygen before the oxide appears at the surface has die same form as that derived for die carburizing of die metal, and... [Pg.264]

The technical problem in die high teiiiperamre application of Si3N4 is that unlike the pure material, which can be prepared in small quantities by CVD for example, die commercial material is made by sintering the nitride with additives, such as MgO. The presence of the additive increases the rate of oxidation, when compared with the pure material, by an order of magnitude, probably due to the formation of liquid magnesia-silica solutions, which provide short-circuits for oxygen diffusion. These solutions are also known to reduce the mechanical strength at these temperatures. [Pg.269]


See other pages where Rates of oxidation is mentioned: [Pg.1926]    [Pg.2728]    [Pg.2729]    [Pg.1070]    [Pg.164]    [Pg.186]    [Pg.266]    [Pg.380]    [Pg.438]    [Pg.55]    [Pg.71]    [Pg.504]    [Pg.226]    [Pg.41]    [Pg.43]    [Pg.492]    [Pg.94]    [Pg.164]    [Pg.274]    [Pg.518]    [Pg.525]    [Pg.511]    [Pg.138]    [Pg.205]    [Pg.169]    [Pg.287]    [Pg.303]    [Pg.58]    [Pg.256]    [Pg.268]    [Pg.274]    [Pg.119]   
See also in sourсe #XX -- [ Pg.25 ]




SEARCH



Oxidation rates of cation by Mn

Oxidation rates of phenol

Oxidative Addition of Mel to Rhodium The Rate-limiting Step

Parabolic rate law for the oxidation of metals

Rate coefficients of elementary processes in the hydrogen—nitrogen oxide systems

Rate of ethylene oxidations

Rate of oxide thickness growth

Rates of Oxides and Hydroxides

Rates of inorganic oxidation reactions

Rates of inorganic oxidation reactions involving dissolved oxygen

Rates of oxide dissolution

The oxidation of FeS - parabolic to linear rate law transition

The rate of oxidation

© 2024 chempedia.info