Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate, extinction

Strain Rate Extinction. We performed a sequence of strain rate calculations for an 8.4% and a 9.3% (mole fraction) hydrogen-air flame. The equivalence ratios of these flames are = 0.219 and = 0.245, respectively. In both cases the Lewis number of the deficient reactant (hydrogen) was significantly less than one. In particular, at the input jet, the Lewis numbers were equal to 0.29 for both the 8.4% flame and the 9.3% flame. We also found that these values did not change by more than 15% through the flame. [Pg.412]

In addition to the low-strain limit, which can be used to determine laminar burning velocities, the opposed-flow configuration can also be used to determine high-strain-rate extinction limits. As the inlet velocities increase, the flame is pushed closer to the symmetry plane and the maximum flame temperature decreases. There is a flow rate beyond which a flame can no longer be sustained (i.e., it is extinguished). Figure 17.11 illustrates extinction behavior for premixed methane-air flames of varying stoichiometries. [Pg.708]

Good heat transfer on the outside of the reactor tube is essential but not sufficient because the heat transfer is limited at low flow rates at the inside film coefficient in the reacting stream. The same holds between catalyst particles and the streaming fluid, as in the case between the fluid and inside tube wall. This is why these reactors frequently exhibit ignition-extinction phenomena and non-reproducibility of results. Laboratory research workers untrained in the field of reactor thermal stability usually observe that the rate is not a continuous function of the temperature, as the Arrhenius relationship predicts, but that a definite minimum temperature is required to start the reaction. This is not a property of the reaction but a characteristic of the given system consisting of a reaction and a particular reactor. [Pg.35]

The solvent used was 5 %v/v ethyl acetate in n-hexane at a flow rate of 0.5 ml/min. Each solute was dissolved in the mobile phase at a concentration appropriate to its extinction coefficient. Each determination was carried out in triplicate and, if any individual measurement differed by more than 3% from either or both replicates, then further replicate samples were injected. All peaks were symmetrical (i.e., the asymmetry ratio was less than 1.1). The efficiency of each solute peak was taken as four times the square of the ratio of the retention time in seconds to the peak width in seconds measured at 0.6065 of the peak height. The diffusivities obtained for 69 different solutes are included with other physical and chromatographic properties in table 1. The diffusivity values are included here as they can be useful in many theoretical studies and there is a dearth of such data available in the literature (particularly for the type of solutes and solvents commonly used in LC separations). [Pg.338]

D, W. Blair, CombustFlame 20 (1), 105—9 (1973) CA 78, 113515 (1973) A simple heat-transfer model is coupled with an Arrhenius-type pyrolysis law to study the effect of solid-state heat-transfer losses on burning rates of solid rocket-proplnt strands. Such heat-transfer losses materially affect the burning rates and also cause extinction phenomena similar to some that had been observed exptly. Strand diam and compn, adiabatic burning rate, and the heat-transfer film coeff at the strand surface are important variables. Results of theoretical analysis are applied to AP-based composite solid proplnts... [Pg.940]

History of upward flame propagation and extinction in lean limit methane/air mixture. Square 5 cm x 5 cm vertical tube. Green color frames indicate PIV flow images. Red color represents direct photography of propagating flame. Extinction starts just after frame c. Framing rate... [Pg.23]

Laminar flame speed is one of the fundamental properties characterizing the global combustion rate of a fuel/ oxidizer mixture. Therefore, it frequently serves as the reference quantity in the study of the phenomena involving premixed flames, such as flammability limits, flame stabilization, blowoff, blowout, extinction, and turbulent combustion. Furthermore, it contains the information on the reaction mechanism in the high-temperature regime, in the presence of diffusive transport. Hence, at the global level, laminar flame-speed data have been widely used to validate a proposed chemical reaction mechanism. [Pg.44]

The counterflow configuration has been extensively utilized to provide benchmark experimental data for the study of stretched flame phenomena and the modeling of turbulent flames through the concept of laminar flamelets. Global flame properties of a fuel/oxidizer mixture obtained using this configuration, such as laminar flame speed and extinction stretch rate, have also been widely used as target responses for the development, validation, and optimization of a detailed reaction mechanism. In particular, extinction stretch rate represents a kinetics-affected phenomenon and characterizes the interaction between a characteristic flame time and a characteristic flow time. Furthermore, the study of extinction phenomena is of fundamental and practical importance in the field of combustion, and is closely related to the areas of safety, fire suppression, and control of combustion processes. [Pg.118]

It is also well known that there exist different extinction modes in the presence of radiative heat loss (RHL) from the stretched premixed flame (e.g.. Refs. [8-13]). When RHL is included, the radiative flames can behave differently from the adiabatic ones, both qualitatively and quantitatively. Figure 6.3.1 shows the computed maximum flame temperature as a function of the stretch rate xfor lean counterflow methane/air flames of equivalence ratio (j) = 0.455, with and without RHL. The stretch rate in this case is defined as the negative maximum of the local axial-velocity gradient ahead of the thermal mixing layer. For the lean methane/air flames,... [Pg.118]

For the adiabatic condition in which RHL is suppressed, the flame response exhibits the conventional upper and middle branches of the characteristic ignition-extinction curve, with the upper branch representing the physically realistic solutions. It can be noted that the effective Le of this lean methane/air mixture is sub-unity. It can be seen from Figure 6.3.1 that, with increasing stretch rate, first increases owing to the nonequidiffusion effects (S > 0), and then decreases as the extinction state is approached, owing to incomplete reaction. Furthermore, is also expected to degenerate to the adiabatic flame temperature, when v = 0. [Pg.119]

Experimentally, two modes of extinction, based on the separation between the twin flames are observed. Specifically, the extinction of lean counterflow flames of n-decane/02/N2 mixtures occurs with a finite separation distance, while that of rich flames exhibits a merging of two luminous flamelets. The two distinct extinction modes can be clearly seen in Figure 6.3.2. As discussed earlier, the reactivity of a positively stretched flame with Le smaller (greater) than unity increases (decreases) with the increasing stretch rate. Therefore, the experimental observation is in agreement with the... [Pg.119]

The measured extinction stretch rates for n-decane/ O2/N2 mixtures at 400 K preheat temperature as a function of equivalence ratio are shown in Figure 6.3.3. The flame response curves at varying equivalence ratios are also computed using the kinetic mechanisms of Bikas and Peters (67 species and 354 reactions) [17] and Zhao... [Pg.120]


See other pages where Rate, extinction is mentioned: [Pg.416]    [Pg.416]    [Pg.1096]    [Pg.1099]    [Pg.67]    [Pg.433]    [Pg.337]    [Pg.473]    [Pg.749]    [Pg.632]    [Pg.647]    [Pg.648]    [Pg.518]    [Pg.105]    [Pg.766]    [Pg.14]    [Pg.61]    [Pg.67]    [Pg.941]    [Pg.237]    [Pg.426]    [Pg.426]    [Pg.25]    [Pg.37]    [Pg.338]    [Pg.551]    [Pg.129]    [Pg.859]    [Pg.310]    [Pg.395]    [Pg.263]    [Pg.20]    [Pg.21]    [Pg.21]    [Pg.58]    [Pg.119]    [Pg.119]    [Pg.119]    [Pg.119]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Extinction

© 2024 chempedia.info