Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate constants structural effects

Simulation of frank SSBs and base damage as expressed by ALS has been achieved with the RADACK (RADiation attACK) procedure (Begusova et al. 2001b). This takes into account that the various nucleobases and the hydrogens of the sugar moiety react with different rate constants. The effect is shown in Fig. 12.4, where B-DNA is represented in a space-filling model with only the reactive atoms represented, with the same atoms but with sizes according to their OH cross-section or with the non-reactive atoms re-added. It is the last structure that- OH "encounters" in the RADACK procedure. [Pg.371]

Nauser T, Schoneich C. (2003) Thiyl radicals abstract hydrogen atoms from the aC-H bonds in model peptides Absolute rate constants and effect of amino acid structure. / Am Chem Soc 125 2042-2043. [Pg.479]

As is inversely proportional to solvent viscosity, in sufficiently viscous solvents the rate constant k becomes equal to k y. This concerns, for example, reactions such as isomerizations involving significant rotation around single or double bonds, or dissociations requiring separation of fragments, altiiough it may be difficult to experimentally distinguish between effects due to local solvent structure and solvent friction. [Pg.843]

The rate constants for the catalysed Diels-Alder reaction of 2.4g with 2.5 (Table 2.3) demonstrate that the presence of the ionic group in the dienophile does not diminish the accelerating effect of water on the catalysed reaction. Comparison of these rate constants with those for the nonionic dienophiles even seems to indicate a modest extra aqueous rate enhancement of the reaction of 2.4g. It is important to note here that no detailed information has been obtained about the exact structure of the catalytically active species in the oiganic solvents. For example, ion pairing is likely to occur in the organic solvents. [Pg.56]

The results in table 2.6 show that the rates of reaction of compounds such as phenol and i-napthol are equal to the encounter rate. This observation is noteworthy because it shows that despite their potentially very high reactivity these compounds do not draw into reaction other electrophiles, and the nitronium ion remains solely effective. These particular instances illustrate an important general principle if by increasing the reactivity of the aromatic reactant in a substitution reaction, a plateau in rate constant for the reaction is achieved which can be identified as the rate constant for encounter of the reacting species, and if further structural modifications of the aromatic in the direction of further increasing its potential reactivity ultimately raise the rate constant above this plateau, then the incursion of a new electrophile must be admitted. [Pg.29]

Admitting the impossibility of calculating absolute rates, we can concern ourselves with the effect of a structural modification to a particular reactant which we take as a point of reference if the rate constant for the reaction involving the modified compound is k, and that for the... [Pg.122]

Most organic reactions are done in solution, and it is therefore important to recognize some of the ways in which solvent can affect the course and rates of reactions. Some of the more common solvents can be roughly classified as in Table 4.10 on the basis of their structure and dielectric constant. There are important differences between protic solvents—solvents fliat contain relatively mobile protons such as those bonded to oxygen, nitrogen, or sulfur—and aprotic solvents, in which all hydrogens are bound to carbon. Similarly, polar solvents, those fliat have high dielectric constants, have effects on reaction rates that are different from those of nonpolar solvent media. [Pg.237]

Hydrolysis of an enamine yields a carbonyl compound and a secondary amine. Only a few rate constants are mentioned in the literature. The rate of hydrolysis of l-(jS-styryl)piperidine and l-(l-hexenyl)piperidine have been determined in 95% ethanol at 20°C 13). The values for the first-order rate constants are 4 x 10 sec and approximately 10 sec , respectively. Apart from steric effects the difference in rate may be interpreted in terms of resonance stabilization by the phenyl group on the vinyl amine structure, thus lowering the nucleophilic reactivity of the /3-carbon atom of that enamine. [Pg.103]

IV, C, 1, d). Second, for both classes of aromatic compounds such values show a surprisingly small dependence on the nature of the attacking reagent, probably indicating the predominant role of the reorganization of the substrate toward a new state represented by structure 63 or 65. FinaUy, it may not be fortuitous that a correspondence is found between structural effects on substitution rates and on ionization constants (Section IV,C, l,a). Bond-making would in fact be the essential analogy between these phenomena [Eqs. (16) and (17)], and... [Pg.355]

Compared with the bonding groups (mol%) to aromatic ring of PS, the degree of acylation was observed when MA was used. These results was obtained by determination of kinetic parameters of PS with MA and AA under the same reaction conditions. As shown in Table 5, if the initial rate (Wo) and rate constant (K) of the acylation reaction between MA and AA are compared, the MA is almost 10-14 times higher than AA in the presence of BF3-OEt2 catalyst. This fact is due to the stretching structure of MA and the effect of the catalyst. [Pg.269]

However, an evaluation of the observed (overall) rate constants as a function of the water concentration (5 to 25 % in acetonitrile) does not yield constant values for ki and k2/k i. This result can be tentatively explained as due to changes in the water structure. Arnett et al. (1977) have found that bulk water has an H-bond acceptor capacity towards pyridinium ions about twice that of monomeric water and twice as strong an H-bond donor property towards pyridines. In the present case this should lead to an increase in the N — H stretching frequency in the o-complex (H-acceptor effect) and possibly to increased stabilization of the incipient triazene compound (H-donor effect). Water reduces the ion pairing of the diazonium salt and therefore increases its reactivity (Penton and Zollinger, 1971 Hashida et al., 1974 Juri and Bartsch, 1980), resulting in an increase in the rate of formation of the o-complex (ik ). [Pg.397]

An example of a reaction series in which large deviations are shown by — R para-substituents is provided by the rate constants for the solvolysis of substituted t-cumyl chlorides, ArCMe2Cl54. This reaction follows an SN1 mechanism, with intermediate formation of the cation ArCMe2 +. A —R para-substituent such as OMe may stabilize the activated complex, which resembles the carbocation-chloride ion pair, through delocalization involving structure 21. Such delocalization will clearly be more pronounced than in the species involved in the ionization of p-methoxybenzoic acid, which has a reaction center of feeble + R type (22). The effective a value for p-OMe in the solvolysis of t-cumyl chloride is thus — 0.78, compared with the value of — 0.27 based on the ionization of benzoic acids. [Pg.496]

Table 4 Structural Effects on 1 1 CTC Formation Constants (Kf) Between Br2 and Olefins and the Respective Bromination Rates. Table 4 Structural Effects on 1 1 CTC Formation Constants (Kf) Between Br2 and Olefins and the Respective Bromination Rates.
Probably the most useful data obtained kinetically are the rate constants themselves. They are important since they can tell us the effect on the rate of a reaction of changes in the structure of the reactants (see Chapter 9), the solvent, the ionic strength, the addition of catalysts, and so on. [Pg.296]

Numerous quantum mechanic calculations have been carried out to better understand the bonding of nitrogen oxide on transition metal surfaces. For instance, the group of Sautet et al have reported a comparative density-functional theory (DFT) study of the chemisorption and dissociation of NO molecules on the close-packed (111), the more open (100), and the stepped (511) surfaces of palladium and rhodium to estimate both energetics and kinetics of the reaction pathways [75], The structure sensitivity of the adsorption was found to correlate well with catalytic activity, as estimated from the calculated dissociation rate constants at 300 K. The latter were found to agree with numerous experimental observations, with (111) facets rather inactive towards NO dissociation and stepped surfaces far more active, and to follow the sequence Rh(100) > terraces in Rh(511) > steps in Rh(511) > steps in Pd(511) > Rh(lll) > Pd(100) > terraces in Pd (511) > Pd (111). The effect of the steps on activity was found to be clearly favorable on the Pd(511) surface but unfavorable on the Rh(511) surface, perhaps explaining the difference in activity between the two metals. The influence of... [Pg.85]


See other pages where Rate constants structural effects is mentioned: [Pg.276]    [Pg.38]    [Pg.90]    [Pg.246]    [Pg.121]    [Pg.830]    [Pg.840]    [Pg.245]    [Pg.316]    [Pg.71]    [Pg.284]    [Pg.778]    [Pg.1042]    [Pg.191]    [Pg.15]    [Pg.594]    [Pg.104]    [Pg.16]    [Pg.906]    [Pg.232]    [Pg.271]    [Pg.414]    [Pg.422]    [Pg.215]    [Pg.195]    [Pg.310]    [Pg.658]    [Pg.906]    [Pg.25]    [Pg.208]    [Pg.218]    [Pg.263]    [Pg.459]    [Pg.92]    [Pg.11]   
See also in sourсe #XX -- [ Pg.269 , Pg.279 , Pg.281 , Pg.297 ]




SEARCH



Effective rate constant

Rate constant, effect

Structural constant

Structure constants

© 2024 chempedia.info