Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rate constants carbon

A similar circumstance is detectable for nitrations in organic solvents, and has been established for sulpholan, nitromethane, 7-5 % aqueous sulpholan, and 15 % aqueous nitromethane. Nitrations in the two organic solvents are, in some instances, zeroth order in the concentration of the aromatic compound (table 3.2). In these circumstances comparisons with benzene can only be made by the competitive method. In the aqueous organic solvents the reactions are first order in the concentration of the aromatic ( 3.2.3) and comparisons could be made either competitively or by directly measuring the second-order rate constants. Data are given in table 3.6, and compared there with data for nitration in perchloric and sulphuric acids (see table 2.6). Nitration at the encounter rate has been demonstrated in carbon tetrachloride, but less fully explored. ... [Pg.46]

One of the most sensitive tests of the dependence of chemical reactivity on the size of the reacting molecules is the comparison of the rates of reaction for compounds which are members of a homologous series with different chain lengths. Studies by Flory and others on the rates of esterification and saponification of esters were the first investigations conducted to clarify the dependence of reactivity on molecular size. The rate constants for these reactions are observed to converge quite rapidly to a constant value which is independent of molecular size, after an initial dependence on molecular size for small molecules. The effect is reminiscent of the discussion on the uniqueness of end groups in connection with Example 1.1. In the esterification of carboxylic acids, for example, the rate constants are different for acetic, propionic, and butyric acids, but constant for carboxyUc acids with 4-18 carbon atoms. This observation on nonpolymeric compounds has been generalized to apply to polymerization reactions as well. The latter are subject to several complications which are not involved in the study of simple model compounds, but when these complications are properly considered, the independence of reactivity on molecular size has been repeatedly verified. [Pg.278]

Thermodynamically, the formation of methane is favored at low temperatures. The equilibrium constant is 10 at 300 K and is 10 ° at 1000 K (113). High temperatures and catalysts ate needed to achieve appreciable rates of carbon gasification, however. This reaction was studied in the range 820—1020 K, and it was found that nickel catalysts speed the reaction by three to four orders of magnitude (114). The Hterature for the carbon-hydrogen reaction has been surveyed (115). [Pg.417]

Extensive research has been conducted on catalysts that promote the methane—sulfur reaction to carbon disulfide. Data are pubhshed for sihca gel (49), alurnina-based materials (50—59), magnesia (60,61), charcoal (62), various metal compounds (63,64), and metal salts, oxides, or sulfides (65—71). Eor a sihca gel catalyst the rate constant for temperatures of 500—700°C and various space velocities is (72)... [Pg.29]

Hydrolysis to Glycols. Ethylene chlorohydrin and propylene chlorohydrin may be hydrolyzed ia the presence of such bases as alkaU metal bicarbonates sodium hydroxide, and sodium carbonate (31—33). In water at 97°C, l-chloro-2-propanol forms acid, acetone, and propylene glycol [57-55-6] simultaneously the kinetics of production are first order ia each case, and the specific rate constants are nearly equal. The relative rates of solvolysis of... [Pg.73]

The corrosion rate of carbon steel (and most cast irons) in pure water is about constant between a pH of 4 and 10 (see Fig. 5.5). In solutions containing strong acids such as hydrochloric and sulfuric, normally pro-... [Pg.159]

The adsorption of carbon monoxide retards the reduction reaction with the rate constant k, followed by the desorption reaction with a rate constant k in the overall rate equation... [Pg.272]

Table 4-1 lists some rate constants for acid-base reactions. A very simple yet powerful generalization can be made For normal acids, proton transfer in the thermodynamically favored direction is diffusion controlled. Normal acids are predominantly oxygen and nitrogen acids carbon acids do not fit this pattern. The thermodynamicEilly favored direction is that in which the conventionally written equilibrium constant is greater than unity this is readily established from the pK of the conjugate acid. Approximate values of rate constants in both directions can thus be estimated by assuming a typical diffusion-limited value in the favored direction (most reasonably by inspection of experimental results for closely related... [Pg.149]

These are rate constants for the hydrolysis of cinnamic anhydride in bicarbonate-carbonate buffers. The pK of bicarbonate is 10.22. Find the rate constant for hydrolysis, at each pH, at zero buffer concentration. Analyze the data to determine if the acid or base component of the buffer, or both, are responsible for catalysis, and give the catalytic rate constant(s). [Pg.307]

These rate constants are for the hydrolysis of cinnamic anhydride in carbonate buffer, pH 8.45, total buffer concentration 0.024 M, in the presence of the catalysts pyridine, A -methylimidazole (NMIM), or 4-dimethylaminopyridine (DMAP). In the absence of added catalyst, but the presence of buffer, the rate constant was 0.005 24 s . You may assume that only the conjugate base form of each catalyst is catalytically effective. Calculate the catalytic rate constant for the three catalysts. What is the catalytic power of NMIM and of DMAP relative to pyridine ... [Pg.308]

Hydrolysis of an enamine yields a carbonyl compound and a secondary amine. Only a few rate constants are mentioned in the literature. The rate of hydrolysis of l-(jS-styryl)piperidine and l-(l-hexenyl)piperidine have been determined in 95% ethanol at 20°C 13). The values for the first-order rate constants are 4 x 10 sec and approximately 10 sec , respectively. Apart from steric effects the difference in rate may be interpreted in terms of resonance stabilization by the phenyl group on the vinyl amine structure, thus lowering the nucleophilic reactivity of the /3-carbon atom of that enamine. [Pg.103]

At 20 C, the rate constant for this uncatalyzed reaction, uncat is 0.03/sec. In the presence of the enzyme carbonic anhydrase, the rate constant for this reaction, is 10 /sec. [Pg.21]

Asano and co-workers have reported die kinetic effects of pressure, solvent, and substituent on geometric isomerization about die carbon-nitrogen double bond for pyrazol-3-one azomethines 406 (R = H), 406 (R = NO2) and 407, (Scheme 93). The results demonstrate the versatility of die inversion mechanism. The rotation mechanism has been invalidated. First-wder rate constants and activating volumes for diermal E-Z isomerization for 406 (R = H) and 406 (R = NO2) are given at 25°C in benzene and methanol (89JOC379). [Pg.143]

Figure 9-82E. -in. packing data for system carbon dioxide-sodium hydroxide, gas rate constant. Reproduced by permission of the American Institute of Chemical Engineers, Leva, M., AI.Ch.E. Jour., V. 1, No. 2 (1955) p. 224 all rights reserved. [Pg.366]

German and Littlejohn have observed that increasing the Si content of carbon steel reduces the linear rate constant during breakaway and Banks... [Pg.995]

According to the Marcus theory [64] for outer-sphere reactions, there is good correlation between the heterogeneous (electrode) and homogeneous (solution) rate constants. This is the theoretical basis for the proposed use of hydrated-electron rate constants (ke) as a criterion for the reactivity of an electrolyte component towards lithium or any electrode at lithium potential. Table 1 shows rate-constant values for selected materials that are relevant to SE1 formation and to lithium batteries. Although many important materials are missing (such as PC, EC, diethyl carbonate (DEC), LiPF6, etc.), much can be learned from a careful study of this table (and its sources). [Pg.428]

By quenching the polymerization with C1402 or Cl40 the determination of the number of propagation rate constants was found to be also possible for the two-component catalytic system TiCl2 + AlEt2Cl 158, 159). In contrast to alcohols, carbon dioxide and carbon monoxide under polymerization conditions react only with titanium-carbon active bonds and do not react with inactive aluminum-polymer bonds. [Pg.199]

It has been proposed that aromatic solvents, carbon disulfide, and sulfur dioxide form a complex with atomic chlorine and that this substantially modifies both its overall reactivity and the specificity of its reactions.126 For example, in reactions of Cl with aliphatic hydrocarbons, there is a dramatic increase in Ihe specificity for abstraction of tertiary or secondary over primary hydrogens in benzene as opposed to aliphatic solvents. At the same time, the overall rate constant for abstraction is reduced by up to two orders of magnitude in the aromatic solvent.1"6 The exact nature of the complex responsible for this effect, whether a ji-coinplex (24) or a chlorocyclohexadienyl radical (25), is not yet resolved.126- 22... [Pg.34]

The last comprehensive review of reactions between carbon-centered radicals appeared in 1973.142 Rate constants for radical-radical reactions in the liquid phase have been tabulated by Griller.14 The area has also been reviewed by Alfassi114 and Moad and Solomon.145 Radical-radical reactions arc, in general, very exothermic and activation barriers are extremely small even for highly resonance-stabilized radicals. As a consequence, reaction rate constants often approach the diffusion-controlled limit (typically -109 M 1 s"1). [Pg.36]

Rate constants tor reactions of carbon-centered radicals tor the period through 1982 have been compiled by Lorand340 and Asmus and Bonifacio- 50 and for 1982-1992 by Roduner and Crocket.3 1 The recent review of Fischer and Radom should also be consulted.j41 Absolute rate constants for reaction with most monomers lie in the range 105-106 M"1 s"1. Rate data for reaction of representative primary, secondary, and tertiary alkyl radicals with various monomers are summarized in Table 3.6. [Pg.113]


See other pages where Rate constants carbon is mentioned: [Pg.918]    [Pg.331]    [Pg.918]    [Pg.331]    [Pg.395]    [Pg.18]    [Pg.35]    [Pg.223]    [Pg.227]    [Pg.493]    [Pg.514]    [Pg.212]    [Pg.399]    [Pg.99]    [Pg.136]    [Pg.631]    [Pg.631]    [Pg.373]    [Pg.161]    [Pg.568]    [Pg.746]    [Pg.908]    [Pg.975]    [Pg.994]    [Pg.1008]    [Pg.194]    [Pg.171]    [Pg.429]    [Pg.10]    [Pg.28]    [Pg.114]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Carbon monoxide oxidation rate constant

Carbonates dissolution rate constants

Soil organic carbon rate constant

© 2024 chempedia.info