Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rare hydrides

AHoy M16630 (ZE63A) which contains rare-earth metals and zinc, is designed to take advantage of a newer he at-treatment technique involving inward diffusion of hydrogen and formation of zirconium hydride [7704-99-6]. The alloy is heated in hydrogen at 480°C for 10, 24, or 72 hours for 6.3,... [Pg.328]

Hydrocarbyl Complexes. Stable homoleptic and heteroleptic uranium hydrocarbyl complexes have been synthesized. Unlike the thorium analogues, uranium alkyl complexes are generally thermally unstable due to P-hydride elimination or reductive elimination processes. A rare example of a homoleptic uranium complex is U(CH(Si(CH2)3)2)3, the first stable U(I11) homoleptic complex to have been isolated. A stmctural study indicated a triganol... [Pg.335]

Recently two rare paramagnetic iridium(IV) hydride complexes have been reported [172]. [Pg.160]

In order to follow further the effect that hydride formation has on the catalytic activity of palladium and its alloys it would be of interest to investigate a group of reactions involving the addition of hydrogen to a double or triple bond. Palladium itself has found a well-known wide application in such reactions. Nevertheless even where /3-hydride formation is very probable it is still relatively rare to find considerations of this possibility in most publications. [Pg.264]

As mentioned previously in the introduction to the present review the ability to form the hydride phase is not characteristic solely of palladium or nickel. It would be of interest, therefore, to verify the results on the poisoning effect of hydride formation in the case of nickel or palladium by comparing with the other transition 3d, 4d, and 5d metals and the rare earth (4f) metals. [Pg.283]

Indirect methods used can profit by the thermodynamic data of a particular metal-hydrogen system. The determination of the H/Me ratio after complete desorption of hydrogen from a sample, despite an apparent simplicity of the method, gives adequate results only when the bulk metal sample was entirely saturated with hydrogen, and that is a very rare case. The metal catalyst crystallites can be saturated in a nonuniform way, not through their whole thickness. The surface of this polycrystalline sample varies to such extent in its behavior toward interaction with hydrogen that hydride forms only in patches on its surface. A sample surface becomes a mosaique of /3-hydride and a-phase areas (85). [Pg.287]

A direct attack of nucleophiles on the sulfur atom of the sulfone or sulfoxide group in acyclic or large-ring sulfones and sulfoxides is rather rare, or unknown, excluding metal hydride reductions and/or reductive deoxygenations. The situation is completely different in the three-membered ring systems. [Pg.405]

As is the case for cationic polymerisation, anionic polymerisation can terminate by only one mechanism, that is by proton transfer to give a terminally unsaturated polymer. However, proton transfer to initiator is rare - in the example just quoted, it would involve the formation of the unstable species NaH containing hydride ions. Instead proton transfer has to occur to some kind of impurity which is capable for forming a more stable product. This leads to the interesting situation that where that monomer has been rigorously purified, termination cannot occur. Instead reaction continues until all of the monomer has been consumed but leaves the anionic centre intact. Addition of extra monomer causes further polymerisation to take place. The potentially reactive materials that result from anionic initiation are known as living polymers. [Pg.34]

The subject index provides access to the text by way of methods, techniques, reaction types, apparatus, effects and other phenomena. Also, it lists compound classes such as organotin compounds or rare-earth hydrides which cannot be expressed by the empirical formulas of the compound index. [Pg.19]

Transition-metal catalyzed photochemical reactions for hydrogen generation from water have recently been investigated in detail. The reaction system is composed of three major components such as a photosensitizer (PS), a water reduction catalyst (WRC), and a sacrificial reagent (SR). Although noble-metal complexes as WRC have been used [214—230], examples for iron complexes are quite rare. It is well known that a hydride as well as a dihydrogen (or dihydride) complex plays important roles in this reaction. [Pg.72]

Note that the main difference between zirconium hydride and tantalum hydride is that tantalum hydride is formally a d 8-electron Ta complex. On the one hand, a direct oxidative addition of the carbon-carbon bond of ethane or other alkanes could explain the products such a type of elementary step is rare and is usually a high energy process. On the other hand, formation of tantalum alkyl intermediates via C - H bond activation, a process already ob-... [Pg.178]

Nowadays, such hydride electrodes are used widely to make alkaline storage batteries which in their design are similar to Ni-Cd batteries but exhibit a considerably higher capacity than these. These two types of storage battery are interchangeable, since the potential of the hydride electrode is similar to that of the cadmium electrode. The metal alloys used to prepare the hydride electrodes are multicomponent alloys, usually with a high content of rare-earth elements. These cadmium-free batteries are regarded as environmentally preferable. [Pg.356]

Although a number of mono- and binuclear palladium hydrides have been successfully identified structurally and spectroscopically,375,781-786 very rare are the hydrido polynuclear Pd complexes that have been convincingly characterized. To our knowledge there is no X-ray structure of... [Pg.638]

One of the very rare examples of a combination of a radical with a pericydic reaction - in this case a [4+2] Diels-Alder cycloaddition - is depicted in Scheme 3.83 [133]. The sequence, elaborated by Malacria and coworkers, is based on the premise that the vinyl radical 3-341 formed from the substrate 3-340 using tributyltin hydride exists mainly in the Z -form. This is reduced by a hydrogen atom to form a 1,3-diene, which can undergo an intramolecular Diels-Alder reaction via an exotransition state reaction (the chain lies away from diene). [Pg.275]

A range of rare earth metal complexes were subsequently shown to catalyze ethylene polymerization and, on occasion, living characteristics have been reported.226-228 Dimeric hydrides such as (79)—(82) are extremely active with turnover numbers > 1800 s-1 recorded for (79) at room temperature. The samarium hydride (82) also effects the block copolymerization of methyl methacrylate (MMA) and ethylene 229 further discussion may be found in Section 9.1.4.4. [Pg.12]


See other pages where Rare hydrides is mentioned: [Pg.1529]    [Pg.1528]    [Pg.1529]    [Pg.1528]    [Pg.300]    [Pg.196]    [Pg.230]    [Pg.236]    [Pg.956]    [Pg.29]    [Pg.213]    [Pg.253]    [Pg.274]    [Pg.284]    [Pg.286]    [Pg.183]    [Pg.1387]    [Pg.171]    [Pg.205]    [Pg.482]    [Pg.384]    [Pg.347]    [Pg.1318]    [Pg.308]    [Pg.732]    [Pg.27]    [Pg.65]    [Pg.100]    [Pg.320]    [Pg.60]    [Pg.188]    [Pg.179]    [Pg.395]    [Pg.57]    [Pg.74]   
See also in sourсe #XX -- [ Pg.194 ]

See also in sourсe #XX -- [ Pg.194 ]

See also in sourсe #XX -- [ Pg.457 ]




SEARCH



Hydride rare earth metal

Outlook for rare earth based metal hydrides and NiMH rechargeable batteries

Rare earth hydrides

Rare earth hydrides, stabilities

Rare-earth hydride thin films

Thin rare-earth hydride

© 2024 chempedia.info