Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raney nickel, sulfurization

Catalytic hydrogenation is mostly used to convert C—C triple bonds into C C double bonds and alkenes into alkanes or to replace allylic or benzylic hetero atoms by hydrogen (H. Kropf, 1980). Simple theory postulates cis- or syn-addition of hydrogen to the C—C triple or double bond with heterogeneous (R. L. Augustine, 1965, 1968, 1976 P. N. Rylander, 1979) and homogeneous (A. J. Birch, 1976) catalysts. Sulfur functions can be removed with reducing metals, e. g. with Raney nickel (G. R. Pettit, 1962 A). Heteroaromatic systems may be reduced with the aid of ruthenium on carbon. [Pg.96]

Active Raney nickel induces desulfurization of many sulfur-containing heterocycles thiazoles are fairly labile toward this ring cleavage agent. The reaction occurs apparently by two competing mechanisms (481) in the first, favored by alkaline conditions, ring fission occurs before desul-, furization, whereas in the second, favored by the use of neutral catalyst, the initial desulfurization is followed by fission of a C-N bond and formation of carbonyl derivatives by hydrolysis (Scheme 95). [Pg.134]

H-acid, l-hydroxy-3,6,8-ttisulfonic acid, which is one of the most important letter acids, is prepared as naphthalene is sulfonated with sulfuric acid to ttisulfonic acid. The product is then nitrated and neutralized with lime to produce the calcium salt of l-nitronaphthalene-3,6,8-ttisulfonic acid, which is then reduced to T-acid (Koch acid) with Fe and HCl modem processes use continuous catalytical hydrogenation with Ni catalyst. Hydrogenation has been performed in aqueous medium in the presence of Raney nickel or Raney Ni—Fe catalyst with a low catalyst consumption and better yield (51). Fusion of the T-acid with sodium hydroxide and neutralization with sulfuric acid yields H-acid. Azo dyes such as Direct Blue 15 [2429-74-5] (17) and Acid... [Pg.494]

Reduction. Just as aromatic amine oxides are resistant to the foregoing decomposition reactions, they are more resistant than ahphatic amine oxides to reduction. Ahphatic amine oxides are readily reduced to tertiary amines by sulfurous acid at room temperature in contrast, few aromatic amine oxides can be reduced under these conditions. The ahphatic amine oxides can also be reduced by catalytic hydrogenation (27), with 2inc in acid, or with staimous chloride (28). For the aromatic amine oxides, catalytic hydrogenation with Raney nickel is a fairly general means of deoxygenation (29). Iron in acetic acid (30), phosphoms trichloride (31), and titanium trichloride (32) are also widely used systems for deoxygenation of aromatic amine oxides. [Pg.190]

In past years, metals in dilute sulfuric acid were used to produce the nascent hydrogen reductant (42). Today, the reducing agent is hydrogen in the presence of a catalyst. Nickel, preferably Raney nickel (34), chromium or molybdenum promoted nickel (43), or supported precious metals such as platinum or palladium (35,44) on activated carbon, or the oxides of these metals (36,45), are used as catalysts. Other catalysts have been suggested such as molybdenum and platinum sulfide (46,47), or a platinum—nithenium mixture (48). [Pg.311]

Rigorous hydrogenating conditions, particularly with Raney Nickel, remove the sulfur atom of thiophenes. With vapor-phase catalysis, hydrodesulfurization is the technique used to remove sulfur materials from cmde oil. Chemically hydrodesulfurization can be a valuable route to alkanes otherwise difficult to access. [Pg.20]

Thiazoles are desulfurized by Raney nickel, a reaction probably initiated by coordination of the sulfur at Ni. The products are generally anions and carbonyl compounds (see Section 4.02.1.8.4). [Pg.61]

Reduction of the halogen substituent has been carried out by different procedures such as catalytic hydrogenation using palladium-carbon or Raney nickel, red phosphorus and hydroiodic acid, and zinc and sulfuric acid (66AHQ6)347). 3-Deuteropyrazole has been... [Pg.266]

Isothiazolidinones have been desulfurized by Raney nickel (74JOC1210). The 2,1-benzisothiazoline 2,2-dioxide (158) undergoes photocycloaddition with dimethyl acetyl-enedicarboxylate and loss of sulfur dioxide to give a compound of probable structure (168) (80CC471). [Pg.165]

The tetrahydrofurfuryl alcohol available from the Quaker Oats Company, or the Practical grade from the Eastman Kodak Company, has been used. If the material a ailable does not hydrogenate satisfactorily, it may be purified by hydrogenation over Raney nickel at 150 /100-200 atmospheres pressure. A sample of good quality boils at 177-178°/740 mm. and does not become dark-colored when a few milliliters are shaken with 1 drop of concentrated sulfuric acid at room temperature. [Pg.84]

Sulfolane (tetramethylenesulfone) [126-33-0] M 120.2, m 28.5 , b 153-154 /18mm, 285 /760mm, d 1.263, n 1.4820. Prepared commercially by Diels-Alder reaction of 1,3-butadiene and sulfur dioxide, followed by Raney nickel hydrogenation. The principle impurities are water, 3-sulfolene, 2-sulfolene and 2-isopropyl sulfolanyl ether. It is dried by passage through a column of molecular sieves. Distd... [Pg.354]

Pyrroline-N-oxides (12) are sometimes isolated when using zinc-ammonium chloride (19,20), iron-sulfuric acid (14) or hydrazine-Raney nickel (21) as reducing agents. During the reduction, dimerization has been often observed (22). [Pg.255]

A somewhat more circuitous route is required to prepare sulfonamide-containing pyrimidines unsubstituted at 2. Thus, acylation of the 2-thiomethyl pyrimidine, 147, with the sulfonyl chloride, 88, affords 148. Removal of sulfur by means of Raney nickel (149) followed by deacetylation gives sulformethoxine (113). ... [Pg.130]

Partially extracted Raney cobalt is very active, but it is easily poisoned by sulfur and tends to lay down carbon more readily than Raney nickel (21). Cobalt is less active than nickel and much less selective to methane... [Pg.25]

The exact mechanisms of the Raney nickel reactions are still in doubt, though they are probably of the free radical type. It has been shown that reduction of thiophene proceeds through butadiene and butene, not through 1-butanethiol or other sulfur compounds, that is, the sulfur is removed before the double bonds are reduced. This was demonstrated by isolation of the alkenes and the failure to isolate any potential sulfur-containing intermediates. [Pg.532]

Inorganic solid wastes, particularly those containing toxic metals and toxic metal compounds, used Raney nickel, manganese dioxide, etc. should be placed in glass bottles or lined fiber drums, sealed, properly labeled, and arrangements made for disposal in a secure landfill. Used mercury is particularly pernicious and small amounts should first be amalgamated with zinc or combined with excess sulfur to solidify the material. [Pg.265]

Catalyst, alumina, 34, 79 35, 73 ammonium acetate, 31, 25, 27 copper chromite, 31, 32 36, 12 cuprous oxide-silver oxide, 36, 36, 37 ferric nitrate, hydrated, 31, 53 piperidine, 31, 35 piperidine acetate, 31, 57 Raney nickel, 36, 21 sulfuric acid, 34, 26 Catechol, 33, 74 Cetylmalonic acid, 34, 16 Cetylmalonic ester, 34,13 Chlorination, by sulfuryl chloride, 33, 45 ... [Pg.46]

To a stirred solution of 45g 3,5-dimethoxybenzoyl chloride and 17.4g thiophen in 300 ml benzene at 0° C, add dropwise 10.5g freshly distilled stannic chloride. Stir one hour at room temperature and add 200 ml 3% aqueous HC1. Separate the benzene layer and wash the aqueous layer with benzene. Dry and evaporate in vacuum the combined benzene layers and distill the red residue (250° C bath/4.5) to get 45g 2-(3,5-dimethoxybenzoyl) thiophen(I). Recrystallize from petroleum ether. Add a solution of 21 g AICI3 in 160 ml ether to a stirred suspension of 6.1 g lithium aluminum hydride in 140 ml ether. After 5 minutes add a solution of 39g(I) in 300 ml ether at a rate giving a gentle reflux. Reflux and stir 1 hour cool in an ice bath and treat dropwise with 50 ml water, then 50 ml 6N aqueous sulfuric acid. Separate the layers, extract the aqueous layer with 3X100 ml ether and dry, evaporate in vacuum the combined ether layers. Can distill the residue (230° C bath/5mm) to get 27g oily 2-(3,5-dimethoxybenzyl) thiophen (II). Recrystallize from petroleum ether. Reflux a solution of 5g (II) in 700 ml ethanol with W-7 Raney Nickel prepared from Ni-Al alloy (see Org. Synthesis Coll. Vol 111,176(1955)) for 6 hours. Filter, evaporate in vacuum and can distill (140/0.01) to get about 2.2g oily olivetol dimethyl ether which can be reduced to olivetol as described elsewhere here. -... [Pg.45]

The hydrogenolysis of the carbon-sulfur bond by Raney nickel con-... [Pg.14]


See other pages where Raney nickel, sulfurization is mentioned: [Pg.486]    [Pg.115]    [Pg.389]    [Pg.88]    [Pg.93]    [Pg.105]    [Pg.129]    [Pg.80]    [Pg.156]    [Pg.48]    [Pg.191]    [Pg.68]    [Pg.958]    [Pg.32]    [Pg.431]    [Pg.478]    [Pg.234]    [Pg.119]    [Pg.531]    [Pg.940]    [Pg.941]    [Pg.1003]    [Pg.88]    [Pg.274]    [Pg.27]    [Pg.97]    [Pg.73]    [Pg.455]    [Pg.15]   
See also in sourсe #XX -- [ Pg.253 ]




SEARCH



Raney

Sulfur nickel

© 2024 chempedia.info