Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Raney nickel pyridines

The alkylation of pyridine [110-86-1] takes place through nucleophiUc or homolytic substitution because the TT-electron-deficient pyridine nucleus does not allow electrophiUc substitution, eg, Friedel-Crafts alkylation. NucleophiUc substitution, which occurs with alkah or alkaline metal compounds, and free-radical processes are not attractive for commercial appHcations. Commercially, catalytic alkylation processes via homolytic substitution of pyridine rings are important. The catalysts effective for this reaction include boron phosphate, alumina, siHca—alurnina, and Raney nickel (122). [Pg.54]

Reduction. Quinoline may be reduced rather selectively, depending on the reaction conditions. Raney nickel at 70—100°C and 6—7 MPa (60—70 atm) results in a 70% yield of 1,2,3,4-tetrahydroquinoline (32). Temperatures of 210—270°C produce only a slightly lower yield of decahydroquinoline [2051-28-7]. Catalytic reduction with platinum oxide in strongly acidic solution at ambient temperature and moderate pressure also gives a 70% yield of 5,6,7,8-tetrahydroquinoline [10500-57-9] (33). Further reduction of this material with sodium—ethanol produces 90% of /ra/ j -decahydroquinoline [767-92-0] (34). Reductions of the quinoline heterocycHc ring accompanied by alkylation have been reported (35). Yields vary widely sodium borohydride—acetic acid gives 17% of l,2,3,4-tetrahydro-l-(trifluoromethyl)quinoline [57928-03-7] and 79% of 1,2,3,4-tetrahydro-l-isopropylquinoline [21863-25-2]. This latter compound is obtained in the presence of acetone the use of cyanoborohydride reduces the pyridine ring without alkylation. [Pg.390]

Pyrazolopyridines isomeric to those described previously have been obtained by other methods. Thus, the derivative (558) was formed by Raney nickel reduction of the 4-nitrosopyrazole (557) (7UHC1035), and the pyrazolo[3,4-c]pyridine derivative (560) was prepared from the azide (559) (79CC627). [Pg.273]

Cyclodecanediol has been prepared by the hydrogenation of sebacoin in the presence of Raney nickel or platinum, by the reduction of sebacoin with aluminum isopropoxide or lithium aluminum hydride, and by the oxidation of cyclodecene with osmium tetroxide and pyridine. ... [Pg.13]

Dimethyl ketals and enol ethers are stable to the conditions of oxime formation (hydroxylamine acetate or hydroxylamine hydrochloride-pyridine). Thioketals and hemithioketals are cleaved to the parent ketones by cadmium carbonate and mercuric chloride. Desulfurization of thioketals with Raney nickel leads to the corresponding methylene compounds, while thioenol ethers give the corresponding olefin. In contrast, desulfurization of hemithioketals regenerates the parent ketone. ... [Pg.385]

The azidohydrins obtained by azide ion opening of epoxides, except for those possessing a tertiary hydroxy group, can be readily converted to azido mesylates on treatment with pyridine/methanesulfonyl chloride. Reduction and subsequent aziridine formation results upon reaction with hydrazine/ Raney nickel, lithium aluminum hydride, or sodium borohydride/cobalt(II)... [Pg.27]

In 1956 it was found that when pyridine is refluxed with a modified Raney-nickel catalyst, 2,2 -bipyridine (1) is formed in satisfactory yield. The isomeric bipyridines could not be detected, and the product was readily purified. Similar heterocyclic biaryls have been formed in the same way from substituted pyridines and from some related compounds, the yield being dependent on the nature of the compound. The reaction has become the method of choice for the preparation of 2,2 -bipyridine, and it is now used on an industrial scale. Bipyridyls are of particular importance as chelating agents. [Pg.179]

In addition to the Raney nickel catalysts, Raney catalysts derived from iron, cobalt, and copper have been examined for their action on pyridine. At the boiling point of pyridine, degassed Raney iron gave only a very small yield of 2,2 -bipyridine but the activity of iron in this reaction is doubtful as the catalyst was subsequently found to contain 1.44% of nickel. Traces of 2,2 -bipyridine (detected spectroscopically) were formed from pyridine and a degassed, Raney cobalt catalyst but several Raney copper catalysts failed to produce detectable quantities of 2,2 -bipyridine following heating with pyridine. [Pg.182]

The Preparation of Substituted 2,2 -Bipyridines from Substituted Pyridines and Degassed Raney Nickel -i ... [Pg.183]

Several substituted pyridines have been examined using the degassed Raney nickel, and the results are summarized in Table I. As all the biaryls obtained formed colored chelates with either ferrous or cuprous ions, they must be derivatives of 2,2 -bipyridine. Structural ambiguities cannot arise with 2,2 -bipyridines derived from 2- and 4-substituted pyridines but 3-substituted pyridines could conceivably give three isomeric 2,2 -bipyridines (e.g., 3, 4, 5). In fact, however, each 3-substituted pyridine so far examined has given only one 2,2 -bipyridine. [Pg.184]

Reaction of -picoline over degassed Raney nickel was found to give 5,5 -dimethyl-2,2 -bipyridine (5), the structure of which was established by its synthesis from 2-bromo-5-methylpyridine. Oxidation of this dimethyl-2,2 -bipyridine, and similar oxidation of the diethyl-2,2 -bipyridine derived from 3-ethylpyridinc, gave the corresponding dicarboxylic acid and the same acid was produced by the action of degassed Raney nickel on sodium nicotinate (in water) or on ethyl nicotinate. These transformations established the 5,5 -substitution pattern for three 2,2 -bipyridines derived from 3-substituted pyridines but such evidence is not available for the biaryls... [Pg.184]

Inspection of Table I shows that the yields of 2,2 -bipyridines obtainable from a substituted pyridine in the reaction with degassed Raney nickel depend on the nature of the substituents and their positions in the ring. [Pg.185]

Most of the reactions with quinolines and degassed Raney nickels have been carried out at the atmospheric boiling point (above 230 C), a condition which is known to favor the formation of by-products. With quinoline and 4-methylquinoline (lepidine), however, the yields of the 2,2 -biquinolines were increased three to four times by heating in vacuo at 150° C, and it seems probable that other quinolines will behave similarly. Table II also shows that the yields of 2,2 -biquino-lines obtained under comparable conditions vary with the position of the methyl group in a fashion reminiscent of the trends observed with the pyridines (Table I). This similarity extends to the behavior of the two 2-methyl substituted quinolines studied, which undergo loss of the 2-methyl group to some extent and form traces of 2,2 -biquinolines. [Pg.188]

Reaction between Pyridine and W-7 Raney Nickel Catalysts Yields of 2,2 -Bipyridike and of Complex ... [Pg.193]

Several products other than 2,2 -biaryls have been isolated following reaction of pyridines with metal catalysts. From the reaction of a-picoline with nickel-alumina, Willink and Wibaut isolated three dimethylbipyridines in addition to the 6,6 -dimethyl-2,2 -bipyridine but their structures have not been elucidated. From the reaction of quinaldine with palladium-on-carbon, Rapoport and his co-workers " obtained a by-product which they regarded as l,2-di(2-quinolyl)-ethane. From the reactions of pyridines and quinolines with degassed Raney nickel several different types of by-product have been identified. The structures and modes of formation of these compounds are of interest as they lead to a better insight into the processes occurring when pyridines interact with metal catalysts. [Pg.197]

A. By-products from the Reaction of Pyridines with Degassed Raney Nickel... [Pg.198]

The crude 2,2 -bipyridine obtained from the reaction of pyridine and degassed Raney nickel was found to contain 1.5% of 2 6, 2"-terpyridine, but no 2,2 2, 2" 6 ",2 "-quaterpyridine could be detected. Moreover, experiments with 2,2 -bipyridine and Raney nickel have failed to yield quaterpyridine, and the amount of terpyridine formed in experiments with mixtures of pyridine and 2,2 -bipyridine was found to be no higher than in the reaction with pyridine itself. " ... [Pg.198]

From the dimensions of the lattice of W-6 Raney nickel, it seems that the formation of 2,2 6, 2"-terpyridine would be expected when one molecule of 2,2 -bipyridine and one molecule of pyridine are... [Pg.198]

The most important by-product formed in the reaction of pyridine with degassed Raney nickel is an organonickel complex which has been shown to be a complex of one molecule of 2,2 -bipyridine, two molecules of 2,2 -pyrrolylpyridine (17), and one nickel II ion. It is significant that, although the formation of 2,2 -bipyridine ceases after 50 hr refluxing, the formation of this complex continues for at least another 140 hr. [Pg.199]

The majority of analgesics can be classified as either central or peripheral on the basis of their mode of action. Structural characteristics usually follow the same divisions the former show some relation to the opioids while the latter can be recognized as NSAlD s. The triamino pyridine 17 is an analgesic which does not seem to belong stmcturally to either class. Reaction of substituted pyridine 13 (obtainable from 12 by nitration ) with benzylamine 14 leads to the product from replacement of the methoxyl group (15). The reaction probably proceeds by the addition elimination sequence characteristic of heterocyclic nucleophilic displacements. Reduction of the nitro group with Raney nickel gives triamine 16. Acylation of the product with ethyl chlorofor-mate produces flupirtine (17) [4]. [Pg.102]

Investigations of PAN reduction in DMF solution in the presence of Raney nickel, sodium hyposulfite, acetic acid, pyridine, and water at 40-100 °C have shown52 ... [Pg.116]

This reduction has also been achieved by treating the nitrile with sodium hypophosphite (NaH2P02 ) and Raney nickel in aqueous acetic acid - pyridine or formic acid. [Pg.294]

Moderate to good enantioselectivities were obtained for nearly all examples, but the products from 83a-c could be recrystallized to higher enantiomeric purity. Addition of iodine was critical for catalysis as was the use of a ligand with electron-poor para-fluorophenyl groups on the phosphorous atom. Substitution at the 3 position of the pyridine ring was described as being difficult for both the quinolines and pyridine systems. The resulting hydrazine derivatives could be easily converted to piperdines by reduction with Raney nickel or under Birch conditions. [Pg.69]

Bromonaphthalene has been reduced to naphthalene in good yield by hydrogenation over Raney nickel in methanolic potassium hydroxide, by triphenyltin hydride in benzene, by magnesium in isopropyl alcohol, by sodium hydrazide and hydrazine in ether, and by copper(I) acetate in pyridine. ... [Pg.113]

Double bonds in alkenyl pyridines may be hydrogenated under mild conditions (Raney nickel at room temperature) to give alkyl pyridines [450]. If the double bond is conjugated with the pyridine ring sodium in alcohol will reduce both the double bond and the pyridine ring in good yields [450]. [Pg.56]


See other pages where Raney nickel pyridines is mentioned: [Pg.124]    [Pg.132]    [Pg.181]    [Pg.182]    [Pg.185]    [Pg.191]    [Pg.192]    [Pg.192]    [Pg.193]    [Pg.194]    [Pg.195]    [Pg.197]    [Pg.200]    [Pg.59]    [Pg.921]    [Pg.32]    [Pg.174]    [Pg.47]    [Pg.18]    [Pg.941]    [Pg.280]    [Pg.36]    [Pg.135]    [Pg.54]   
See also in sourсe #XX -- [ Pg.597 ]

See also in sourсe #XX -- [ Pg.8 , Pg.597 ]

See also in sourсe #XX -- [ Pg.8 , Pg.597 ]




SEARCH



Nickel pyridine

Raney

© 2024 chempedia.info