Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radioactive emissions beta particles

There are three main types of radioactive decay alpha particle emission, beta particle emission, and the emission of gamma radiation. When an unstable isotope undergoes radioactive decay, it produces one or more different isotopes. We represent radioactive decay using a nuclear equation. Two rules for balancing nuclear equations are given below. [Pg.142]

Define or illustrate the following terms thermodynamic stability kinetic stability radioactive decay beta-particle production alpha-particle production positron production electron capture gamma-ray emissions... [Pg.918]

The most important types of radioactive particles are alpha particles, beta particles, gamma rays, and X-rays. An alpha particle, which is symbolized as a, is equivalent to a helium nucleus, fHe. Thus, emission of an alpha particle results in a new isotope whose atomic number and atomic mass number are, respectively, 2 and 4 less than that for the unstable parent isotope. [Pg.642]

Natural radioactive processes in themselves give rise to changes of one element into another. Emission of an alpha particle reduces the atomic number of an element by two units, and emission of a beta particle increases the atomic number by one unit. Thus, for isotopes of elements near... [Pg.364]

Gamma ray The shortest wavelength and highest energy type of all electromagnetic radiation. It originates in the nucleus of radioactive isotopes along with alpha particle, beta particle, or neutron emissions. [Pg.1444]

Briefly describe radioactive transformations, particularly as they apply to beta particle emissions. [Pg.27]

Radioactive transformations are accomplished by several different mechanisms, most importantly alpha ptirticle, beta particle, tuid gamma ray emissions, Each of tliese mechanisms are sponuuieous nuclear transformations. The result of these transformations is tlie formation of different tuid more stable elements. [Pg.27]

Several different mechanisms, most importtuitly alplia particle, beta particle, and gamma ray emissions accomplish radioactive transformations. Each of these mechanisms is a spontaneous nuclear transformation. Tlie result of tliese transformations is the formation of different stable elements. Tlie kind of transformation that will ttike place for any given radioactive element is a function of the type of nuclear inslabilitv as well as the mass/energy relationship. The nuclear instability is dependent on the ratio of neutrons to... [Pg.193]

There are three common ways by which nuclei can approach the region of stability (1) loss of alpha particles (a-decay) (2) loss of beta particles (/3-decay) (3) capture of an orbital electron. We have already encountered the first type of radioactivity, a-decay, in equation (/0). Emission of a helium nucleus, or alpha particle, is a common form of radioactivity among nuclei with charge greater than 82, since it provides a mechanism by which these nuclei can be converted to new nuclei of lower charge and mass which lie in the belt of stability. The actinides, in particular, are very likely to decay in this way. [Pg.417]

The nuclear reactor also must be shielded against the emission of radioactive material to the external environment. Suitable radiation controls include both thermal and biological shielding systems. Radiation from alpha particles (a rays) and beta particles ((3 rays) has little penetrating power, but gamma rays have deep penetration properties. Neutron radiation is, however, the primary area of risk. Typically, extremely thick concrete walls are used as a neutron absorber, but lead-lined concrete and special concretes are also used. [Pg.63]

Beer s law The absorbance of electromagnetic radiation by a sample is proportional to the molar concentration of the absorbing species and the length of the sample through which the radiation passes, beta (P) decay Nuclear decay due to fi-particle emission, beta (P) particle A fast electron emitted from a nucleus in a radioactive decay. [Pg.942]

Alpha and beta radiation, on the other hand, are particles that possess mass and charge. If we set the weight of a hydrogen atom as 1 and the charge on its ion as +1, then the table below gives the corresponding properties of the radioactive emissions known in the early twentieth century. [Pg.13]

Radioactivity—Spontaneous nuclear transformations that result in the formation of new elements. These transformations are accomplished by emission of alpha or beta particles from the nucleus or by the capture of an orbital electron. Each of these reactions may or may not be accompanied by a gamma photon. [Pg.283]

The numerical combination of protons and neutrons in most nuclides is such that the nucleus is quantum mechanically stable and the atom is said to be stable, i.e., not radioactive however, if there are too few or too many neutrons, the nucleus is unstable and the atom is said to be radioactive. Unstable nuclides undergo radioactive transformation, a process in which a neutron or proton converts into the other and a beta particle is emitted, or else an alpha particle is emitted. Each type of decay is typically accompanied by the emission of gamma rays. These unstable atoms are called radionuclides their emissions are called ionizing radiation and the whole property is called radioactivity. Transformation or decay results in the formation of new nuclides some of which may themselves be radionuclides, while others are stable nuclides. This series of transformations is called the decay chain of the radionuclide. The first radionuclide in the chain is called the parent the subsequent products of the transformation are called progeny, daughters, or decay products. [Pg.301]

The most familiar radioactive element is uranium, which has two naturally occurring isotopes of mass numbers 235 and 238 that decay very slowly. Review the first few steps in the decay of uranium-238, which changes to lead-206 after the emission of 8 alpha and 6 beta particles. The earliest stages of the decay scheme involve only three elements, as shown in Figure 3-2. [Pg.32]

Man-made radioactive atoms are produced either as a by-product of fission of uranium atoms in a nuclear reactor or by bombarding stable atoms with particles, such as neutrons, directed at the stable atoms with high velocity. These artificially produced radioactive elements usually decay by emission of particles, such as positive or negative beta particles and one or more high energy photons (gamma rays). Unstable (radioactive) atoms of any element can be produced. [Pg.160]

Three main forms of radioactive decay involve the emission of alpha particles, beta particles, and gamma rays. An alpha particle is equivalent to the nucleus of a helium atom. Beta particles are nothing more than electrons. Gamma rays are a form of electromagnetic radiation. [Pg.38]

In 1899 he identified two forms of radioactivity, which he called alpha and beta particles. As we saw earlier, he deduced that alpha particles are helium nuclei. Beta particles are electrons - but, strangely, they come from the atomic nucleus, which is supposed to be composed only of protons and neutrons. Before the discovery of the neutron this led Rutherford and others to believe that the nucleus contained some protons intimately bound to electrons, which neutralized their charge. This idea became redundant when Chadwick first detected the neutron in 1932 but in fact it contains a deeper truth, because beta-particle emission is caused by the transmutation ( decay ) of a neutron into a proton and an electron. [Pg.95]

Thorium-234 is also radioactive. When it decays, it emits a beta particle. Recall that a beta particle is an electron emitted by a neutron as the neutron transforms to a proton. So with thorium, which has 90 protons, beta emission leaves the nucleus with one fewer neutron and one more proton. The new nucleus has 91 protons and is no longer thorium now it is the element protactinium. Although the atomic number has increased by 1 in this process, the mass number (protons + neutrons) remains the same. The nuclear equation is... [Pg.119]

Almost all radioactive nuclides that emit alpha particles are in the upper end of the periodic table, with atomic numbers greater than 82 (lead), but a few alpha-particle emitting nuclides are scattered through lower atomic numbers. The reason why alpha-particle emitters are limited to nuclides with larger mass numbers is that generally only in this region is alpha-particle emission energetically possible. Most radioactive nuclides with smaller mass numbers emit beta-particle radiation. [Pg.61]

BETA DECAY. The process that occurs when beta particles are emitted by radioactive nuclei. The name beta particle or beta radiation was applied in the early years of radioactivity investigations, before it was fully understood what beta particles are. It is known now, of course, that beta particles are electrons. When a radioactive nuclide undergoes beta decay its atomic number Z changes by +1 or —1, but its mass number A is unchanged. When the atomic number is increased by 1, negative beta particle (negatron) emission occurs and when the atomic number is decreased by 1, there is positive beta particle (position) emission or orbital electron capture. [Pg.198]

Decay. The diminution of a radioactive substance due to nuclear emission of alpha or beta particles, gamma rays or positrons. [Pg.1406]

The age of an art object can provide a valuable clue to whether it is real or a forgery. Because the half-life for a specific isotope is constant, half-life can be used to find the age of an object. The isotope put to use for radioactive dating is carbon-14. The half-life of carbon-14 is 5,730 years. The amount of carbon-14 in our atmosphere remains fairly constant. When an object such as a plant is alive, it absorbs C02. The carbon atoms in the C02 are made of a specific ratio of carbon-14 atoms to carbon-12 atoms. The carbon-14 atoms decay by emission of beta particles ... [Pg.343]

In the case of radium, as well as any radionuclide, it is important to note that, in addition to the usual routes of exposure that must be considered (inhalation, oral, dermal, and occasionally parenteral) for toxic chemicals, there is also external and internal exposure to emissions of alpha and beta particles and gamma rays and it is these radioactive emissions which are considered to be responsible for most of the biologically deleterious effects observed in exposed persons. Further information about radionuclides is presented in Appendix B. [Pg.22]

Calculate the maximum kinetic energy of the beta particle emitted in the radioactive decay of 6He. Assume that the beta particle has maximum energy when no other emission is involved. [Pg.367]

Tritium is also one of the products obtained by bombardment of fluorine, beryllium, antimony, copper, or silver with deuterons, or the bombardment of boron and nitrogen with neutrons. Tritium is the simplest known radioactive isotope. It decays by emission of beta particles to form an isotope of helium and has a half-life of about 12 years. [Pg.638]


See other pages where Radioactive emissions beta particles is mentioned: [Pg.8]    [Pg.320]    [Pg.56]    [Pg.57]    [Pg.302]    [Pg.306]    [Pg.77]    [Pg.573]    [Pg.1642]    [Pg.1754]    [Pg.238]    [Pg.716]    [Pg.12]    [Pg.15]    [Pg.31]    [Pg.341]    [Pg.390]    [Pg.27]    [Pg.73]    [Pg.73]    [Pg.52]    [Pg.243]    [Pg.1688]    [Pg.1800]   
See also in sourсe #XX -- [ Pg.764 , Pg.764 , Pg.765 ]

See also in sourсe #XX -- [ Pg.764 , Pg.764 , Pg.765 ]

See also in sourсe #XX -- [ Pg.765 , Pg.765 , Pg.766 , Pg.767 , Pg.779 , Pg.779 ]




SEARCH



Beta emission

Beta particle emission

Beta particles

Radioactive beta particle

Radioactive emissions

Radioactive particles

Radioactivity beta particles

© 2024 chempedia.info