Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrrolidones polymerization

Poly(vinyl pyrrolidone) is produced by free-radical-initiated chain polymerization of N-vinyl pyrrolidone. Polymerization is usually carried out in aqueous solution to produce a solution containing 30% polymer. The material is marketed in this form or spray dried to give a fine powder. [Pg.434]

Table XI. Comparison of Mono- and Bicyclic Crown Ethers in 2-Pyrrolidone Polymerization... Table XI. Comparison of Mono- and Bicyclic Crown Ethers in 2-Pyrrolidone Polymerization...
A mixture of solvent can be also used to prepare the nanocomposite by in situ synthesis of the magnetic nanopaiticles into the previously prepared polymer. A composite of PANI and Fe304 nanopaiticles were prepared from iV-methyl pyrrolidone polymeric solution by addition of an aqueous solution of iron(ll) sulfate [66]. The magnetic properties of the final composites strongly depend on the preparation conditions, such as the reaction temperature and the FeS04 concentration. [Pg.54]

It might be noted that most (not all) alkenes are polymerizable by the chain mechanism involving free-radical intermediates, whereas the carbonyl group is generally not polymerized by the free-radical mechanism. Carbonyl groups and some carbon-carbon double bonds are polymerized by ionic mechanisms. Monomers display far more specificity where the ionic mechanism is involved than with the free-radical mechanism. For example, acrylamide will polymerize through an anionic intermediate but not a cationic one, A -vinyl pyrrolidones by cationic but not anionic intermediates, and halogenated olefins by neither ionic species. In all of these cases free-radical polymerization is possible. [Pg.349]

Water-soluble polymers eomprise a major elass of polymerie materials and are used in a wide variety of applieations. Synthetie water-soluble polymers inelude poly(vinyl aleohol), poly(aerylamide), poly(aerylie aeid), poly(ethylene oxide), poly(vinyl pyrrolidone), eellulosies, and many eopolymers of these types. Their end uses are quite varied and their applieations depend mainly on their viseosify-ing, rheologieal, and surfaee-aetive properties (1). For example, poly (vinyl aleohol) is used in adhesives, fibers, textile and paper sizing, paekaging, as a stabilizer for emulsion polymerization, and as a preeursor for the manufaeture of poly(vinyl butyral), whieh is used in automotive windshields. Poly(vinyl aleohol) is also the world s largest volume, eommodity, water-soluble polymer. [Pg.559]

Nylon 4 is produced hy ring opening 2-pyrrolidone. Anionic polymerization is used to polymerize the lactam. Cocatalysts are used to increase the yield of the polymer. Carhon dioxide is reported to he an excellent polymerization activator. [Pg.366]

The anionic polymerization of 61 catalysed by potassium pyrrolidonate is characterized by a rapid conversion in THF and DMSO, even at or below room temperatures, as indicated in Table 9s8. ... [Pg.74]

From the kinetic viewpoint the polymerizability of 61 is considered to be higher than that of e-caprolactam, which is polymerized usually at temperatures above 135 °C63,64 Thermodynamically, the polymerization of 61 appears to be more favored than that of a-pyrrolidone, for which no polymerization is observed in THF63-65 The higher polymerizability of 61 may be attributed not only to its highly strained bicyclic structure but also to the activation of the anion 66 by the... [Pg.75]

In 1968, a French Patent issued to the Sumitomo Chemical Company disclosed the polymerization of several vinyl monomers in C02 [84], The United States version of this patent was issued in 1970, when Fukui and coworkers demonstrated the precipitation polymerization of several hydrocarbon monomers in liquid and supercritical C02 [85], As examples of this methodology, they demonstrated the preparation of the homopolymers PVC, PS, poly(acrylonitrile) (PAN), poly(acrylic acid) (PAA), and poly(vinyl acetate) (PVAc). In addition, they prepared the random copolymers PS-co-PMMA and PVC-co-PVAc. In 1986, the BASF Corporation was issued a Canadian Patent for the preparation of polymer powders through the precipitation polymerization of monomers in carbon dioxide at superatmospheric pressures [86], Monomers which were polymerized as examples in this patent included 2-hydroxyethylacrylate and iV-vinylcarboxamides such as iV-vinyl formamide and iV-vinyl pyrrolidone. [Pg.116]

Polyvinyl alcohol (PVA), which is a water soluble polyhidroxy polymer, is one of the widely used synthetic polymers for a variety of medical applications [197] because of easy preparation, excellent chemical resistance, and physical properties. [198] But it has poor stability in water because of its highly hydrophilic character. Therefore, to overcome this problem PVA should be insolubilized by copolymerization [43], grafting [199], crosslinking [200], and blending [201], These processes may lead a decrease in the hydrophilic character of PVA. Because of this reason these processes should be carried out in the presence of hydrophilic polymers. Polyfyinyl pyrrolidone), PVP, is one of the hydrophilic, biocompatible polymer and it is used in many biomedical applications [202] and separation processes to increase the hydrophilic character of the blended polymeric materials [203,204], An important factor in the development of new materials based on polymeric blends is the miscibility between the polymers in the mixture, because the degree of miscibility is directly related to the final properties of polymeric blends [205],... [Pg.156]

With continuous development of systems for controlled drug release, new materials are being used whose influence on peptide stability must be carefully examined. Thus, the model hexapeptide Val-Tyr-Pro-Asn-Gly-Ala (Fig. 6.30) embedded in poly (vinyl alcohol) and poly(vinyl pyrrolidone) matrices had rates of deamidation that increased with increasing water content or water activity, and, hence, with decreasing glass transition temperature (Tg). However, the degradation behavior in the two polymers differed so that chemical reactivity could not be predicted from water content, water activity, or T% alone. Furthermore, the hexapeptide was less stable in such hydrated polymeric matrices than in aqueous buffer or lyophilized polymer-free powders [132],... [Pg.327]

Crospovidone is a cross-linked homopolymer of A-vinyl-2-pyrrolidone. Acetylene and formaldehyde react to form butynediol. Hydrogenation and subsequent cyclodehydrogenation gives butyrolactone. The reaction of butyrolactone with ammonia produces pyrrolidone, which is vinylated with acetylene under pressure. The linear polymerization of the vinylpyrrolidone yields polyvinylpyrrolidone, a soluble binder, whereas the popcorn (branched) polymerization yields crospovidone, an insoluble... [Pg.270]

In a series of papers, Matsuda et al. [291-295] employed RAFT-SIP with immobilized benzyl N,N-diethyldithiocarbamate to form polymer brushes from styrene, methacrylamides, acrylamides and acrylates, NIPAM and N-vinyl-2-pyrrolidone on various surfaces. The SIP is initiated by UV irradiation of the surface-bonded dithiocarbamates. Thermoresponsive polymer brushes were prepared by the polymerization of NIPAM and investigated by XPS, wetting experiments and mainly SPM [294]. Patterned polymer brush layers were also prepared. When chloro-methyl styrene was used as a comonomer, RAFT-SIP resulted in branching. By control of the branching, spatio-resolved hyperbranching of a controllable stem/ branch design was realized (Fig. 9.32) [293, 295]. [Pg.423]

Because of acid-catalyzed hydrolysis of N-vinylpyrrolidone in water, polymerization was carried out in organic solvent - DMF. Three types of samples of poly(methacrylic acid) were used syndiotactic - obtained by radiation polymerization, atactic - obtained by radical polymerization, and isotactic - obtained by hydrolysis of isotactic poly(methyl methacrylate). It was found that in all cases the rate enhancement appeared in comparison with the blank polymerization (without template). The rate enhancement became more pronounced with increasing chain length and syndiotacticity of the template. According to the authors, the rate enhancement is connected with the stronger complex formation between poly(vinyl pyrrolidone) and syndiotactic poly(methacrylic acid) then with isotactic template. This conclusion was supported by turbimetric titration in DMF/DMSO system and by model considerations. It is worth noting, however, that... [Pg.30]


See other pages where Pyrrolidones polymerization is mentioned: [Pg.578]    [Pg.578]    [Pg.198]    [Pg.294]    [Pg.116]    [Pg.249]    [Pg.190]    [Pg.191]    [Pg.193]    [Pg.197]    [Pg.334]    [Pg.578]    [Pg.578]    [Pg.198]    [Pg.294]    [Pg.116]    [Pg.249]    [Pg.190]    [Pg.191]    [Pg.193]    [Pg.197]    [Pg.334]    [Pg.421]    [Pg.331]    [Pg.229]    [Pg.178]    [Pg.188]    [Pg.31]    [Pg.168]    [Pg.201]    [Pg.343]    [Pg.487]    [Pg.150]    [Pg.17]    [Pg.590]    [Pg.118]    [Pg.42]    [Pg.44]    [Pg.130]    [Pg.440]    [Pg.450]    [Pg.450]    [Pg.126]    [Pg.130]   
See also in sourсe #XX -- [ Pg.392 , Pg.393 , Pg.415 , Pg.428 , Pg.430 , Pg.434 , Pg.435 ]




SEARCH



Pyrrolidon

Pyrrolidone

Pyrrolidones

© 2024 chempedia.info