Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

2-Pyrrolidones esters

Pyrrolizidines compounds have been produced in connection with syntheses of other types of natural products. For example, Gensler and Hu prepared the dioxopyrrolizidine ester (46) as an intermediate in the synthesis of ( + )-slaframine, an indolizidine alkaloid obtained from cultures of Rhizoctonia leguminicola. The pyrrolidone ester (47), prepared from l-glutamic acid [Eq. (14)], was optically active, but the cyclized product, formed in quantitative yield from 47, was completely racemized. The synthesis of 2-acetyl-1,3-dioxopyrrolizidine (48) was carried out by Kruger and Arndt to assist with their investigations on model compounds aimed toward the total synthesis of a-cyclopiazonic acid, the main toxic principle of Penicillium cyclopium The spectra of the product (48) obtained in 30% overall yield was typical of an intramolecularly H-bonded enolized )S-... [Pg.261]

A/ -Methoxycarbonyl-2-pyrroline undergoes Vilsmeier formylation and Friedel-Crafts acylation in the 3-position (82TL1201). In an attempt to prepare a chloropyrroline by chlorination of 2-pyrrolidone, the product (234) was obtained in 62% yield (8UOC4076). At pH 7, two molecules of 2,3-dihydropyrrole add together to give (235), thus exemplifying the dual characteristics of 2,3-dihydropyrroles as imines and enamines. The ability of pyrrolines to react with nucleophiles is central to their biosynthetic role. For example, addition of acetoacetic acid (possibly as its coenzyme A ester) to pyrroline is a key step in the biosynthesis of the alkaloid hygrine (236). [Pg.86]

The 4-azidobutyrate ester is introduced via the acid chloride. Gleavage occurs by pyrrolidone formation after the azide is reduced by hydrogenation, H2S or Ph3P. ... [Pg.111]

The successful development of eye contact lenses led in turn to a demand for soft contact lenses. Such a demand was eventually met by the preparation of copolymers using a combination of an acrylic ester monomer such as methyl methacrylate, a cross-linkable monomer such as a dimethacrylate, and a monomer whose homopolymer is soluble or highly swollen in water such as N-vinyl pyrrolidone. Such copolymers swell in water (hence the term hydrophilic), the degree of swelling being controlled by the specific type and amount of the monomers used. In use the lens is swollen to equilibrium in water, a typical soft lens having a water content of about 75%. [Pg.420]

N-Methyl pyrrolidone, dibasic ethers, and organic esters, substituting for more hazardous paint removers (Paint Removers, 1991 Davis et al., 1994)... [Pg.40]

The treatment of esters of aromatic acids with l-alkyl-2-pyrrolidones and l-alkyl-2-piperidones is an extremely useful method for the preparation of simple pyrrolines and piperideines, respectively. The l-alkyl-3-aroyl-2-... [Pg.258]

A series of pyrrolidones shows promise of being cognitionenhancing agents. One of these, amacetam 3), is synthesized readily by ester-amide exchange between ethyl 2-oxo-l-pyrroli-dineacetate U) and ]1, -di isopropyl ethyl enedi amine ( ). ... [Pg.127]

Carbanions of active methylene compounds also react with aziridine-2-car-boxylic esters to give ring-opened products [129]. The ring-opened intermediates usually cyclize spontaneously to pyrrolidones. Treatment of 190 (Scheme 3.70) with the sodium enolate of dimethyl malonate 191, for example, afforded pyrroli-done 192 in 15% isolated yield, together with 30% of the debenzoylated product 193. [Pg.100]

Preparation of the quaternary anticholinergic agent benzilonium bromide (47) is begun by conjugate addition of ethylamine to methylacrylate, giving aminoester 42. Alkylation of 42 with methyl bromo-acetate leads to diester 43, which is transformed into pyrrolidone 44 by Dieckmann cyclization, followed by decarboxylation. Reduction of 44 by lithium aluminum hydride leads to the corresponding amino-alcohol (45). Transesterification of alcohol 45 with methyl benzilate leads to 46. Benzilonium bromide (47) is obtained by alkylation of ester 46 with ethyl bromide. 2... [Pg.72]

Menthyl chloroformate, chiral derivatizing reagent, 6 76t Menthyl esters, 24 524 Menthyl pyrrolidone carboxylate, 24 525 Menthyl salicylate, 24 524 physical properties of, 22 14t Menthyl valerate, 24 524 Mentoring, of technical service personnel, 24 346-347... [Pg.562]

However, morpholine-4-carboxylic acid 2-hydroxy-1-methyl-ethyl ester is formed by the reaction of PC and the substrate morpholine in an undesired side reaction. By use of 1.4-dioxane or the pyrrolidones as mediator s3 about 30 to 45% of the morphoUne is consumed by this side reaction. The by-product is contained in the PC phase and can not be extracted to the non-polar product phase. The selectivity to the desired amines is lowered, because of the consiunption of the morphoUne. Thus, PC has to be substituted by another polar solvent (e.g. water, methanol or ethylene glycol) in future experiments. The lactates react with the morphoUne, too resulting in the corresponding amide. Overall, the hydroaminomethylation in the TMS systems PC/dodecane/lactate results in a conversion of 1-octene of about 80%, but in selectivities to the amines of only 50 to 60%. [Pg.47]

The amidic group in methyl A -acetyl-p-aminobenzoate was reduced preferentially to an ester group with borane in tetrahydrofuran (1.5-1.8 mol per mol of the amide), giving 66% yield of methyl p-A -ethylaminobenzoate. Similarly l-benzyl-3-methoxycarbonyl-5-pyrrolidone afforded methyl l-ben2yl-3-pyr-rolidinecarboxylate in 54% yield and l,2-diethyl-5-ethoxycarbonyl-3-pyra-zolidone gave ethyl l,2-diethylpyrazolidine-3-carboxylate in 60% yield. [Pg.170]

Nicotine Nicotine, l-methyl-2-(3-piridyl)pirrolidine (13.1.27), is an alkaloid that is isolated from the plant Nicotiana (Nicotiana tabacum, Nicotiam rustica, and others) and can be synthesized in varions ways [33-36]. In particular, it is proposed to proceed from nicotinic acid ethyl ester, which is condensed with iV-methylpyrrolidone, giving l-methyl-2-nicotinoyl pyrrolidone-2 (13.1.23). Acidic hydrolysis of this compound leads to an opening of the pyrrolidine ring giving the intermediate (13.1.24), which under the reaction conditions is decarboxylated to the /-aminoketone (13.1.25). The carbonyl group is reduced to an alcohol and the resnlting prodnct (13.1.26) undergoes dehydration to nicotine (13.1.27). [Pg.185]

The dibasic side chain at position 7 can be alternatively provided by a substituted amino alkyl pyrrolidine. Preparation of that diamine in chiral form starts with the extension of the ester function in pyrrolidone (46-1) by aldol condensation with ethyl acetate (46-2). Acid hydrolysis of the (3-ketoester leads to the free acid that then decarboxylates to form an acetyl group (46-3). The carbonyl group is next converted to an amine by sequential reaction with hydroxylamine to form the oxime, followed by catalytic hydrogenation. The desired isomer (46-4) is then separated... [Pg.459]

D-Glutamic acid-g-(t-butyl)ester N-carboxy anhydride was previously polymerized by Fujimoto et al. (1) in a l,2-dichloroethane/l,4-dioxane mixture using sodium 4-methyl-2-pyrrolidone as initiator. Additional derivatives were... [Pg.478]

Sorm and Beranek39 used an intramolecular acylation in their synthesis of l-azoniumtricyclo[3.3.3.0]undecane (66). Condensation of nitromethane with acrylonitrile in the presence of an alkaline catalyst resulted in the formation of tris-(2-cyanoethyl)nitromethane (60), which afforded the triethyl ester 61 on hydrolysis followed by esterification. The ester was reduced catalytically to give a pyrrolidone (62). The derivative (62) gave rise to 8-(j8-carboethoxyethyl)-3,5-dioxo-pyrrolizidine (63) on heating. Reduction of 63 resulted in the formation of 8-(y-hydroxypropyl)pyrrolizidine (64). Replacement of the hydroxy group by bromine (65), followed by cyclization, afforded the tricyclic compound 66. [Pg.328]

Parrish (1977) reviewed the research and development of lactose ester-type surfactants carried out by Scholnick and his colleagues (Scholnick et al. 1974, 1975 Scholnick and Linfield 1977). Their initial attempts to form lactose esters followed the same transesterification procedures that had been used with sucrose (a fatty acid methyl ester in N,N-dimethylformamide with potassium carbonate as the catalyst). Their successful approach was the reaction of lactose in N-methyl-2-pyrrolidone as the solvent with fatty acid chlorides, resulting in yields of 88 to 95% for esters of lauric, myristic, palmitic, stearic, oleic, and tallow fatty acids. The principal product was the monoester, which is important for detergent use, since diesters and higher esters of lactose are not water soluble. [Pg.319]

NMO NMP Nu PPA PCC PDC phen Phth PPE PPTS Red-Al SEM Sia2BH TAS TBAF TBDMS TBDMS-C1 TBHP TCE TCNE TES Tf TFA TFAA THF THP TIPBS-C1 TIPS-C1 TMEDA TMS TMS-C1 TMS-CN Tol TosMIC TPP Tr Ts TTFA TTN N-methylmorpholine N-oxide jV-methyl-2-pyrrolidone nucleophile polyphosphoric acid pyridinium chlorochromate pyridinium dichromate 1,10-phenanthroline phthaloyl polyphosphate ester pyridinium p-toluenesulfonate sodium bis(methoxyethoxy)aluminum dihydride (3-trimethylsilylethoxy methyl disiamylborane tris(diethylamino)sulfonium tetra-n-butylammonium fluoride f-butyldimethylsilyl f-butyldimethylsilyl chloride f-butyl hydroperoxide 2,2,2-trichloroethanol tetracyanoethylene triethylsilyl triflyl (trifluoromethanesulfonyl) trifluoroacetic acid trifluoroacetic anhydride tetrahydrofuran tetrahydropyranyl 2,4,6-triisopropylbenzenesulfonyl chloride 1,3-dichloro-1,1,3,3-tetraisopropyldisiloxane tetramethylethylenediamine [ 1,2-bis(dimethylamino)ethane] trimethylsilyl trimethylsilyl chloride trimethylsilyl cyanide tolyl tosylmethyl isocyanide meso-tetraphenylporphyrin trityl (triphenylmethyl) tosyl (p-toluenesulfonyl) thallium trifluoroacetate thallium(III) nitrate... [Pg.1319]

It has been demonstrated that the oxygen anion of initially formed product (36) effectively catalysed the [2,3]-Wittig rearrangement as a Lewis base. Other Lewis-base catalysts such as lithio or sodio 2-pyrrolidone promote the same [2,3]-Wittig rearrangement of silyl enolates generated from a-allyloxy ketones, whereas rearrangements of enolates from a-allyloxy esters were efficiently catalysed by ammonium 4-methoxybenzoate.24... [Pg.458]


See other pages where 2-Pyrrolidones esters is mentioned: [Pg.315]    [Pg.315]    [Pg.6]    [Pg.31]    [Pg.164]    [Pg.140]    [Pg.21]    [Pg.213]    [Pg.33]    [Pg.64]    [Pg.418]    [Pg.40]    [Pg.152]    [Pg.131]    [Pg.142]    [Pg.105]    [Pg.103]    [Pg.126]    [Pg.132]    [Pg.132]    [Pg.138]    [Pg.141]    [Pg.128]    [Pg.77]    [Pg.359]   
See also in sourсe #XX -- [ Pg.43 , Pg.394 ]

See also in sourсe #XX -- [ Pg.16 , Pg.19 ]

See also in sourсe #XX -- [ Pg.16 ]

See also in sourсe #XX -- [ Pg.16 ]




SEARCH



2-Pyrrolidones acid esters

Pyrrolidon

Pyrrolidone

Pyrrolidones

© 2024 chempedia.info