Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrrolidines, examples

In spite of the diverse nature of alkaloid structures, two structural units, i.e. fused pyrrolidine and piperidine rings in different oxidation states, appear as rather common denominators. We therefore chose to give several examples for four types of synthetic reactions which have frequently been used in alkaloid total synthesis and which provide generally useful routes to polycyclic compounds with five- or six-membered rings containing one nitrogen atom. These are ... [Pg.289]

The converse situation in which ring closure is initiated by the attack of a carbon-based radical on the heteroatom has been employed only infrequently (Scheme 18c) (66JA4096). The example in Scheme 18d begins with an intramolecular carbene attack on sulfur followed by rearrangement (75BCJ1490). The formation of pyrrolidines by intramolecular attack of an amino radical on a carbon-carbon double bond is exemplified in Scheme 19. In the third example, where cyclization is catalyzed by a metal ion (Ti, Cu, Fe, Co " ), the stereospecificity of the reaction depends upon the choice of metal ion. [Pg.100]

There are several reaction sequences which involve such intramolecular hydrogen abstraction steps. One example is the photolytically intitiated decomposition of N-haloamines in acidic solution, which is known as the Hofinann-Loffier reactionThe reaction leads initially to y-haloamines, but these are usually converted to pyrrolidines by intramolecular nucleophilic substitution ... [Pg.718]

Androst-4-ene-3,l 1,17-trionehas been converted into several 3,17-dienamine derivatives which, on reduction with LiAlH4 followed by removal of the protecting groups, give 11 jS-hydroxyandrost-4-ene-3,17-dione. An unsaturated 3-ketone has also been protected as an enamine in the LiAlH4 reduction of a 21-ester group a further example is the conversion of 7-methylene-5a-an-drostane-3,17-dione into the 3-pyrrolidine enamine followed by reduction of the 17-ketone by Li[OC(CH3)3]3 AlH. ... [Pg.88]

In their original communication on the alkylation and acylation of enamines, Stork et al. (3) had reported that the pyrrolidine enamine of cyclohexanone underwent monoacylation with acid chlorides. For example, the acylation with benzoyl chloride led to monobenzoylcyclohexanone. However, Hunig and Lendle (33) found that treatment of the morpholine enamine of cyclopentanone with 2 moles of propionyl chloride followed by acid hydrolysis gave the enol ester (56), which was proposed to have arisen from the intermediate (55). [Pg.20]

Enamines formed in this way may be distilled or used in situ. The ease of formation of the enamine depends on the structure of the secondary amine as well as the structure of the ketone. Thus pyrrolidine reacts faster than morpholine or piperidine, as expected from a rate-controlling transition state with imonium character. Six-membered ring ketones without a substituents form pyrrolidine enamines even at room temperature in methanol (20), and morpholine enamines are generated in cold acetic acid (21), but a-alkylcyclohexanones, cycloheptanone, and linear ketones react less readily. In such examples acid catalysis with p-toluenesulfonic acid or... [Pg.315]

The Hofmann-Loffler-Freytag reaction represents formation of pyrrolidines or piperidines by thermal or photochemical decomposition of protonated A -haloamines in the presence of strong acid such as sulfuric acid or trifluoroacetic acid. " The Hofmann-Loffler-Freytag reaction may also be carried out in milder conditions, for example, PhI(OAc)2,12, hv as shown in section 2.3.4. [Pg.89]

In an approach to the AB rings of rubrolone 65, Boger examined the use of oxazinones as a replacement for triazines. Reaction of l,3-oxazin-6-one 66 with enamines 67 produced the corresponding pyridines 70. The reaction proceeds in a manner analogous to the triazines however, instead of losing nitrogen, these systems lose CO2 via the intermediate bicyclo[2.2.2]octanes 68. The resultant 69 then loses pyrrolidine as in the triazine example. [Pg.332]

The acetate (1) and its mosylate analog (79) have been shown to undergo cydoad-dition with the CN double bond of alkyl imines to generate substituted pyrrolidines in the presence of nickel or palladium catalyst [35]. For example, both the phenyl imine (80) and the diazene (81) gave reasonable yields of adducts (82) and (83) respectively (Scheme 2.23). [Pg.73]

Substituted TMMs also participate smoothly in imine cycloaddition to generate more structurally elaborate pyrrolidines. The regioselectivity of these reactions is similar to that of olefin addition, although subsequent isomerization of the initial adduct is often observed. For example, the cyano system produced the thermody-... [Pg.74]

The so-called Hofmann-Loeffler-Freytag reaction" " of TV-chloroamines 9 proceeds by a similar mechanism, and is for example used for the synthesis of pyrrolidines 11 ... [Pg.27]

Baker s yeast reducdon of y-nitroketones offers the corresponding chiral nitro alcohols, which areusefid bndding blocks for the synthesis of chiral naniral compounds. For example, opdcally acdve 2-subsdnited pyrrolidine can be prepared using the chiral nitro alcohol fEq. 10.751. ... [Pg.351]

The net effect of the Stork reaction is the Michael addition of a ketone to an cn/3-unsaturated carbonyl compound. For example, cyclohexanone reacts with the. cyclic amine pyrrolidine to yield an enamine further reaction with an enone such as 3-buten-2-one yields a Michael adduct and aqueous hydrolysis completes the sequence to provide a 1,5-diketone (Figure 23.8). [Pg.897]

The Stork enamine reaction and the intramolecular aldol reaction can be carried out in sequence to allow the synthesis of cyclohexenones. For example, reaction of the pyrrolidine enamine of cyclohexanone with 3-buten-2-one. followed by enamine hydrolysis and base treatment, yields the product indicated. Write each step, and show the mechanism of each. [Pg.912]

An example of double asymmetric induction has been reported. The resolved enantiomers of rac-4 have been converted to the aluminum enolates and reacted at —78 °C with enantiomer-ically pure ter/-butyl (S)-2-fonnyl-l-pyrrolidine carboxylate46. A comparison of the two reactions reveals that the reaction pair leading to the (5Fe,/ ,5)-product is matched while the alternative reaction pair is mismatched. [Pg.537]

The use of hydrazone or enamine derivatives of ketones or aldehydes offers the advantage of stcreocontrol via chelated azaenolates. Extremely useful synthetic methodology, with consistently high anti selectivity, has been developed using azaenolates based on (S)- or (R)-l-amino-2-(methoxymethyl)pyrrolidine (SAMP or RAMP)51 58 (Enders method, see Section 1.5.2.4.2.2.3.). An example which illustrates the efficiency of this type of Michael addition is the addition of the lithium azaenolate of (5 )-l-amino-2-(methoxymethyl)pyrrolidine (SAMP) hydrazone of propanal (R = II) to methyl (E )-2-butenoate to give the nub-isomer (an 1 adduct) in 80% yield with a diastereomeric ratio > 98 2,... [Pg.959]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

The 1,3-dipolar reagent can in some cases be generated by the in situ opening of a suitable three-membered ring system. For example, aziridines can add to activated double bonds to give pyrrolidines, for example," ... [Pg.1061]

In a typical example of aliphatic cyclizations, already discussed in Section 5.2, the enamine 675 is alkylated by silylated methyl 4-chloroacetoacetate 747 a [2] to give, via 760 and subsequent ehmination of pyrrolidine, the unsaturated bicycHc /9-ke-toester 761 in, as yet, only 30-40% yield [1]. Analogously, the bicycHc system 1408 with an additional 6-keto group is silylated to 1409 and cyclized via 1410, in an overall yield of 42%, to the tricyclic capnellene intermediate 1411 [3] (Scheme 9.1). An alternative synthesis of bicyclic compounds Hke 761 is given elsewhere [3 a]. [Pg.217]

The enantioselectivity of Sn(II) enolate reactions can be controlled by chiral diamine additives. These reagents are particularly effective for silyl thioketene acetals.162 Several diamines derived from proline have been explored and l-methyl-2-(l-piperidinomethyl)pyrrolidine 21 is an example. Even higher enantioselectivity can be achieved by attachment of bicyclic amines to the pyrrolidinomethyl group.163... [Pg.130]

In addition to nitrones, azomethine ylides are also valuable 1,3-dipoles for five-membered heterocycles [415], which have found useful applications in the synthesis of for example, alkaloids [416]. Again, the groups of both Grigg [417] and Risch [418] have contributed to this field. As reported by the latter group, the treatment of secondary amines 2-824 with benzaldehyde and an appropriate dipolarophile leads to the formation of either substituted pyrrolidines 2-823, 2-825 and 2-826 or oxa-zolidines 2-828 with the 1,3-dipole 2-827 as intermediate (Scheme 2.184). However, the yields and the diastereoselectivities are not always satisfactory. [Pg.177]

As expected, some sequences also occur where a domino anionic/pericyclic process is followed by another bond-forming reaction. An example of this is an anionic/per-icyclic/anionic sequence such as the domino iminium ion formation/aza-Cope/ imino aldol (Mannich) process, which has often been used in organic synthesis, especially to construct the pyrrolidine framework. The group of Brummond [450] has recently used this approach to synthesize the core structure 2-885 of the immunosuppressant FR 901483 (2-886) [451] (Scheme 2.197). The process is most likely initiated by the acid-catalyzed formation of the iminium ion 2-882. There follows an aza-Cope rearrangement to produce 2-883, which cyclizes under formation of the aldehyde 2-884. As this compound is rather unstable, it was transformed into the stable acetal 2-885. The proposed intermediate 2-880 is quite unusual as it does not obey Bredf s rule. Recently, this approach was used successfully for a formal total synthesis of FR 901483 2-886 [452]. [Pg.185]

Another new example using titanocene as catalyst has been revealed by Malacria and coworkers. Here, a previously unknown combination of radical cyclizahon involving an epoxide-opening of 3-154 and a 3-phosphinoyl-elimination takes place to furnish various pyrrolidines 3-155, bearing a tetrasubstituted exo-double bond, in good yields (Scheme 3.41) [66]. [Pg.246]

Intramolecular inverse electron-demand Diels-Alder reaction of iV-propargyl-2-(pyrimidin-2-yl)pyrrolidine provides an alternative route to pyridopyrrolizines. For example, heating of 130 to 170 °C in nitrobenzene affords the cyclized product with the loss of HCN <1992JOC3000> (Equation 9). The above reference includes molecular orbital (MO) calculations on relative reactivities in this series. [Pg.795]


See other pages where Pyrrolidines, examples is mentioned: [Pg.260]    [Pg.224]    [Pg.418]    [Pg.118]    [Pg.133]    [Pg.147]    [Pg.50]    [Pg.108]    [Pg.87]    [Pg.101]    [Pg.91]    [Pg.216]    [Pg.976]    [Pg.109]    [Pg.185]    [Pg.1027]    [Pg.40]    [Pg.132]    [Pg.15]    [Pg.234]    [Pg.398]    [Pg.572]    [Pg.132]    [Pg.412]   
See also in sourсe #XX -- [ Pg.395 ]




SEARCH



© 2024 chempedia.info