Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrolysis, types

Intensification can be achieved using this approach of combination of cavitation and advanced oxidation process such as use of hydrogen peroxide, ozone and photocatalytic oxidation, only for chemical synthesis applications where free radical attack is the governing mechanism. For reactions governed by pyrolysis type mechanism, use of process intensifying parameters which result in overall increase in the cavitational intensity such as solid particles, sparging of gases etc. is recommended. [Pg.58]

GC/MS has also been used to investigate acidic and neutral fractions (after alkaline hydrolysis, separation and trimethylsilylation) of a resinous sample collected from a flint flake dated back to the lower Palaeolithic (roughly 200 000 BC) and recovered near Arezzo in Italy [11]. The results show that the organic material recovered on the flint flake was a pitch obtained from birch bark by a pyrolysis type process. In fact, the main components of the acidic fraction are a series of linear a,oo-dicarboxylic acids ranging from 16 to 22 carbon atoms and a series of oo-hydroxycarboxylic acids ranging from 16 to 22 carbon... [Pg.223]

The concentration of free radicals in the equation is a function of the power input by sonication. C2 compounds probably disintegrate by both the pyrolysis type of reaction in the cavitation bubble and free-radical attack in the liquid phase. Physical operating conditions such as steady-state temperature and initial pH of the solution were found to have little effect upon the destruction rate of the compound. The simplicity and flexibility along with the high efficiency of destruction indicate the potential of a sonochemical-based process to become a competitive technology for water treatment. [Pg.454]

Sealed vessel pyrolysis is another pyrolysis type that is performed in furnace type pyrolysers. In this type of pyrolysis, the sample is heated for a relatively long period of time, in a sealed vessel, generally at relatively low temperature (below 350° C). The pyrolysis products are further analyzed, commonly by off-line procedures (GC, GC/MS, FTIR, etc). The technique allows the pyrolysis to be performed for as long as months and to use different atmospheres (inert or reactive) [17a]. The procedure is not used only as an analytical tool, and it can be seen as a preparative pyrolysis technique. [Pg.87]

Fig. 37.8 Different possibilities for hollow particle formation during spray drying/pyrolysis. Type (a) uniform shell disruption, type (b) non-uniform shell disruption, type (c) contracted shell particle, type (d) non-disrupted smooth surface particle, type (e) non-uniform shell disruption, and type (f) porous particle. (Reprinted from [13] with permission. Copyright 2007, American Society of Mechanical Engineers)... Fig. 37.8 Different possibilities for hollow particle formation during spray drying/pyrolysis. Type (a) uniform shell disruption, type (b) non-uniform shell disruption, type (c) contracted shell particle, type (d) non-disrupted smooth surface particle, type (e) non-uniform shell disruption, and type (f) porous particle. (Reprinted from [13] with permission. Copyright 2007, American Society of Mechanical Engineers)...
Material recycling (separated) Material recycling (mixed) Hydrogenation Pyrolysis (type-clean) Pyrolysis (mixed) Gasification Incineration Thermoselect/ Smould.-burn Landfill... [Pg.463]

Ettre and Zlatkis (6) classified pyrolysis types according to extent of degradation of the sample componnd ... [Pg.38]

L.T. Vlaev, S.Ch. Furmanova, and S.D. Genieva, Products and apphcations of pyrolyzed rice husks structure, morphology, thermal, kinetics and physicomechanical characteristics , in W.S. Donahue and J.C. Brandt eds.. Pyrolysis Types, processes, and industrial sources and products. New York, Nova Science Pubhshers, pp. 267-323,2009. [Pg.578]

Effects on Combustion Toxicology. There appears to be no documented case of any type of fine retardant contributing to human fine casualties. A survey of data from small-scale combustion or pyrolysis experiments revealed no consistent pattern of decrease or increase in the yields of toxic gases (CO, HCN) when phosphoms flame retardants were present (152,153). [Pg.481]

One noteworthy neurotoxic response was demonstrated in laboratory pyrolysis studies using various types of phosphoms flame retardants in rigid urethane foam, but the response was traced to a highly specific interaction of trimethylolpropane polyols, producing a toxic bicycHc trimethylolpropane phosphate [1005-93-2] (152). Formulations with the same phosphoms flame retardants but other polyols avoided this neurotoxic effect completely. [Pg.481]

Coating Theory. This theory includes fire retardants which form an impervious skin on the fiber surface. This coating may be formed during normal chemical finishing, or subsequently when the fire retardant and substrate are heated. It excludes the air necessary for flame propagation and traps any tarry volatiles produced during pyrolysis of the substrate. Examples of this type of agent include the easily fusible salts such as carbonates or borates. [Pg.485]

Liquefaction. Siace the 1970s attempts have been made to commercialize biomass pyrolysis for combiaed waste disposal—Hquid fuels production. None of these plants were ia use ia 1992 because of operating difficulties and economic factors only one type of biomass Hquefaction process, alcohohc fermentation for ethanol, is used commercially for the production of Hquid fuels. [Pg.42]

From the time that isoprene was isolated from the pyrolysis products of natural mbber (1), scientific researchers have been attempting to reverse the process. In 1879, Bouchardat prepared a synthetic mbbery product by treating isoprene with hydrochloric acid (2). It was not until 1954—1955 that methods were found to prepare a high i i -polyisoprene which dupHcates the stmcture of natural mbber. In one method (3,4) a Ziegler-type catalyst of tri alkyl aluminum and titanium tetrachloride was used to polymerize isoprene in an air-free, moisture-free hydrocarbon solvent to an all i7j -l,4-polyisoprene. A polyisoprene with 90% 1,4-units was synthesized with lithium catalysts as early as 1949 (5). [Pg.462]

The conditions of pyrolysis either as low or high temperature carbonization, and the type of coal, determine the composition of Hquids produced, known as tars. Humic coals give greater yields of phenol (qv) [108-95-2] (up to 50%), whereas hydrogen-rich coals give more hydrocarbons (qv). The whole tar and distillation fractions are used as fuels and as sources of phenols, or as an additive ia carbonized briquettes. Pitch can be used as a biader for briquettes, for electrode carbon after coking, or for blending with road asphalt (qv). [Pg.159]

Chemical recovery ia sodium-based sulfite pulpiag is more complicated, and a large number of processes have been proposed. The most common process iavolves liquor iaciaeration under reduciag conditions to give a smelt, which is dissolved to produce a kraft-type green liquor. Sulfide is stripped from the liquor as H2S after the pH is lowered by CO2. The H2S is oxidized to sulfur ia a separate stream by reaction with SO2, and the sulfur is subsequendy burned to reform SO2. Alternatively, ia a pyrolysis process such as SCA-Bidemd, the H2S gas is burned direcdy to SO2. A rather novel approach is the Sonoco process, ia which alumina is added to the spent liquors which are then burned ia a kiln to form sodium aluminate. In anther method, used particulady ia neutral sulfite semichemical processes, fluidized-bed combustion is employed to give a mixture of sodium carbonate and sodium sulfate, which can be sold to kraft mills as makeup chemical. [Pg.274]

Carbon Composites. Cermet friction materials tend to be heavy, thus making the brake system less energy-efficient. Compared with cermets, carbon (or graphite) is a thermally stable material of low density and reasonably high specific heat. A combination of these properties makes carbon attractive as a brake material and several companies are manufacturing carbon fiber—reinforced carbon-matrix composites, which ate used primarily for aircraft brakes and race cats (16). Carbon composites usually consist of three types of carbon carbon in the fibrous form (see Carbon fibers), carbon resulting from the controlled pyrolysis of the resin (usually phenoHc-based), and carbon from chemical vapor deposition (CVD) filling the pores (16). [Pg.273]

Tetracyanoethylene is colorless but forms intensely colored complexes with olefins or aromatic hydrocarbons, eg, benzene solutions are yellow, xylene solutions are orange, and mesitylene solutions are red. The colors arise from complexes of a Lewis acid—base type, with partial transfer of a TT-electron from the aromatic hydrocarbon to TCNE (8). TCNE is conveniendy prepared in the laboratory from malononitrile [109-77-3] (1) by debromination of dibromoma1 ononitrile [1855-23-0] (2) with copper powder (9). The debromination can also be done by pyrolysis at ca 500°C (10). [Pg.403]

When a reaction has many participants, which may be the case even of apparently simple processes like pyrolysis of ethane or synthesis of methanol, a factorial or other experimental design can be made and the data subjected to a re.spon.se. suiface analysis (Davies, Design and Analysis of Industrial Experiments, Oliver Boyd, 1954). A quadratic of this type for the variables X, Xo, and X3 is... [Pg.707]

After brief discussion of the state-of-the-art of modern Py-GC/MS, some most recent applications for stixictural and compositional chai acterization of polymeric materials are described in detail. These include microstixictural studies on sequence distributions of copolymers, stereoregularity and end group chai acterization for various vinyl-type polymers such as polystyrene and polymethyl methacrylate by use of conventional analytical pyrolysis. [Pg.17]

Vapor grown carbon fiber (VGCF) is the descriptive name of a class of carbon fiber which is distinctively different from other types of carbon fiber in its method of production, its unique physical characteristics, and the prospect of low cost fabrication. Simply stated, this type of carbon fiber is synthesized from the pyrolysis of hydrocarbons or carbon monoxide in the gaseous state, in the presence of a catalyst in contrast to a melt-spinning process common to other types of carbon fiber. [Pg.139]

Turning now to other types of ceramic fibre, the most important material made by pyrolysis of organic polymer precursors is silicon carbide fibre. This is commonly made from a poly(diorgano)silane precursor, as described in detail by Riedel (1996) and more concisely by Chawla (1998). Silicon nitride fibres are also made by this sort of approach. Much of this work originates in Japan, where Yajima (1976) was a notable pioneer. [Pg.439]

Chemical type involved in a fire Pyrolysis product... [Pg.42]

Ring fusion seems to occur in the quinoxaline derivative (28), which has been stated to exist in red and blue-black forms. Other derivatives of type 28 are reported. Attempts to prepare 5,6-furo-xanobenzofuroxan by pyrolysis of the azide (29) met with no success. An early example in the literature of such a linear fused structure was shortly afterward revised to the angularly fused type (17). [Pg.16]

Early attempts to prepare 5-amino- and 5-acylaminobenzofuroxans by hypochlorite oxidation of the corresponding o-nitroanilines met with failure. Pyrolysis of the appropriate azide, however, gives 5-dimetliylamino- and 5-acetamidobenzofuroxan, whereas urethans of type (33) are produced by Curtius degradation of the 5-carboxylic acid. Controlled hydrolysis of the acetamido compound and the... [Pg.17]


See other pages where Pyrolysis, types is mentioned: [Pg.127]    [Pg.230]    [Pg.389]    [Pg.127]    [Pg.230]    [Pg.389]    [Pg.232]    [Pg.410]    [Pg.161]    [Pg.456]    [Pg.45]    [Pg.354]    [Pg.14]    [Pg.168]    [Pg.169]    [Pg.527]    [Pg.5]    [Pg.287]    [Pg.288]    [Pg.1551]    [Pg.2244]    [Pg.2369]    [Pg.344]    [Pg.17]    [Pg.334]    [Pg.339]   
See also in sourсe #XX -- [ Pg.38 ]




SEARCH



Arrhenius-type pyrolysis law

Pyrolysis gasoline types

Pyrolysis routes types

Pyrolysis, types Curie point pyrolyser

Pyrolysis, types Filament pyrolyser

Pyrolysis, types Laser pyrolyser

Reaction types and mechanisms in pyrolysis

Reactor Types Used for Pyrolysis

© 2024 chempedia.info