Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrolysis reaction with

The most widely accepted theory of the mechanism of fire-retardant chemicals in reducing flaming combustion of wood is that the chemicals alter the pyrolysis reactions with formation of less flammable gases and tars and more char and water (4,5,8,21,24-29). Some fire retardants start and end the chemical decomposition at lower temperatures. Heat of combustion of the volatiles is reduced. Shafizadeh (21) suggests that a primary function of fire retardants is to promote dehydration and charring of cellulose. [Pg.93]

In kinetically limited models, the pyrolysis rate is no longer calculated solely from a heat balance at the pyrolysis front. Instead, the rate at which the condensed-phase is volatilized depends on its temperature. This gives a local volumetric reaction rate (kg/m3-s) by assuming that all volatiles escape instantaneously to the exterior gas-phase with no internal resistance, the fuel mass flux is obtained by integrating this volumetric reaction rate in depth. One consequence is that the pyrolysis reaction is distributed spatially rather than confined to a thin front as with heat transfer limited models and the thickness of the pyrolysis front is controlled by decomposition kinetics and heat transfer rates. For a pyrolysis reaction with high activation energy or for very high heat transfer rates, the pyrolysis zone becomes thin, and kinetically limited models tend toward heat transfer limited models. [Pg.566]

Wood burns because the cell wall polymers undergo hydrolysis, oxidation, dehydration, and pyrolysis reactions with increasing temperature to give off volatile, flammable gases. The lignin component contributes more to char formation than do the cellulose components, and the charred layer helps insulate the wood from further thermal degradation see Chapter 13). [Pg.176]

In pyrolysis reactions with nonpolar intermediates the main role of water is solvation and dilution. Dilution leads to a preference of unimolecular reactions by which, e.g., tar formation is avoided. The important free radicals of the pyrolysis chain reactions are large free radicals, which react with a reaction rate in the high-pressure plateau even at ambient pressure. At higher pressure the reaction rate could decrease by diffusion limitation. Water can participate in the chain reaction, but without significant influence on the overall kinetics. [Pg.173]

An attempt to correlate the kinetic parameters of the pyrolysis reaction with analytical data was only partly successful. A fairly high coefficient of correlation r was found for the relation of the activation energy E with the concentration of paraffin bonded carbon (CP) in the samples ... [Pg.176]

Various workers have discussed the fire retardancy of polyvinylchloride (PVC) [55-59] using ammonium treated clay montmorillonite nanocomposites [52], hydroxyapatite nanocomposites [56] and antimony trioxide [57]. Lum [60] examined the effect of flame retardant additives on polymer pyrolysis reactions with a PVC composition containing 3 phr of SbiOs. It is well known that a synergistic flame retardancy effect is observed when SbiOs is incorporated into organic halide materials such as PVC. [Pg.87]

C4H9-f)[Si(CH3)3] by pyrolysis reaction with Br2, reaction with TMEDA-LiCH3... [Pg.213]

The sub-stoichiometric combustion involves the risk of soot formation as a result of pyrolysis reactions with acetylene and polycyclic aromatic hydrocarbons as soot precursors [107] [465]. The soot formation will start below a certain steam-to-carbon ratio depending on pressure and other operating parameters [111]. However, the data in Table 1.8 shows results from a soot-free pilot test (100 Nm NG/h) at a low steam-to-carbon ratio of 0.21 [111]. [Pg.42]

With aldehydes, primary alcohols readily form acetals, RCH(OR )2. Acetone also forms acetals (often called ketals), (CH2)2C(OR)2, in an exothermic reaction, but the equiUbrium concentration is small at ambient temperature. However, the methyl acetal of acetone, 2,2-dimethoxypropane [77-76-9] was once made commercially by reaction with methanol at low temperature for use as a gasoline additive (5). Isopropenyl methyl ether [116-11-OJ, useful as a hydroxyl blocking agent in urethane and epoxy polymer chemistry (6), is obtained in good yield by thermal pyrolysis of 2,2-dimethoxypropane. With other primary, secondary, and tertiary alcohols, the equiUbrium is progressively less favorable to the formation of ketals, in that order. However, acetals of acetone with other primary and secondary alcohols, and of other ketones, can be made from 2,2-dimethoxypropane by transacetalation procedures (7,8). Because they hydroly2e extensively, ketals of primary and especially secondary alcohols are effective water scavengers. [Pg.94]

Chemistry. Coal gasification iavolves the thermal decomposition of coal and the reaction of the carbon ia the coal, and other pyrolysis products with oxygen, water, and hydrogen to produce fuel gases such as methane by internal hydrogen shifts... [Pg.65]

Chemical recovery ia sodium-based sulfite pulpiag is more complicated, and a large number of processes have been proposed. The most common process iavolves liquor iaciaeration under reduciag conditions to give a smelt, which is dissolved to produce a kraft-type green liquor. Sulfide is stripped from the liquor as H2S after the pH is lowered by CO2. The H2S is oxidized to sulfur ia a separate stream by reaction with SO2, and the sulfur is subsequendy burned to reform SO2. Alternatively, ia a pyrolysis process such as SCA-Bidemd, the H2S gas is burned direcdy to SO2. A rather novel approach is the Sonoco process, ia which alumina is added to the spent liquors which are then burned ia a kiln to form sodium aluminate. In anther method, used particulady ia neutral sulfite semichemical processes, fluidized-bed combustion is employed to give a mixture of sodium carbonate and sodium sulfate, which can be sold to kraft mills as makeup chemical. [Pg.274]

Cracking temperatures are somewhat less than those observed with thermal pyrolysis. Most of these catalysts affect the initiation of pyrolysis reactions and increase the overall reaction rate of feed decomposition (85). AppHcabiUty of this process to ethane cracking is questionable since equiUbrium of ethane to ethylene and hydrogen is not altered by a catalyst, and hence selectivity to olefins at lower catalyst temperatures may be inferior to that of conventional thermal cracking. SuitabiUty of this process for heavy feeds like condensates and gas oils has yet to be demonstrated. [Pg.443]

Perhaps one of the most exciting developments in the chemistry of quinoxalines and phenazines in recent years originates from the American University of Beirut in Lebanon, where Haddadin and Issidorides first made the observation that benzofuroxans undergo reaction with a variety of alkenic substrates to produce quinoxaline di-AT-oxides in a one-pot reaction which has subsequently become known as the Beirut reaction . Many new reactions tend to fall by the wayside by virtue of the fact that they are experimentally complex or require starting materials which are inaccessible however, in this instance the experimental conditions are straightforward and the starting benzofuroxans are conveniently prepared by hypochlorite oxidation of the corresponding o-nitroanilines or by pyrolysis of o-nitrophenyl azides. [Pg.181]

IsoxazoIidine-3,3-dicarboxylic acid, 2-methoxy-dimethyl ester reaction with bases, 6, 47 Isoxazolidine-3,5-diones synthesis, 6, 112, 113 Isoxazoli dines conformation, 6, 10 3,5-disubstituted synthesis, 6, 109 oxidation, 6, 45-46 PE spectra, 6, 5 photolysis, 6, 46 pyrolysis, 6, 46 reactions, 6, 45-47 with acetone, 6, 47 with bases, 6, 47 reduction, 6, 45 ring fission, S, 80 spectroscopy, 6, 6 synthesis, 6, 3, 108-112 thermochemistry, 6, 10 Isoxazolidin-3-ol synthesis, 6, 111 Isoxazolidin-5-oI synthesis, 6, 111... [Pg.690]

Thiophene, bromotetrahydromethyl-pyrolysis, 3, 902 Thiophene, 5-t-butyl-2-methyl-dealkylation, 4, 800 Thiophene, chloro-polymerization, 4, 758 reaction with n-butyllithium, 4, 831 synthesis, 4, 835, 882, 933 Thiophene, 2-chloromercurio-reactions... [Pg.890]

Diels-Alder reactions, 4, 842 flash vapour phase pyrolysis, 4, 846 reactions with 6-dimethylaminofuKenov, 4, 844 reactions with JV,n-diphenylnitrone, 4, 841 reactions with mesitonitrile oxide, 4, 841 structure, 4, 715, 725 synthesis, 4, 725, 767-769, 930 theoretical methods, 4, 3 tricarbonyl iron complexes, 4, 847 dipole moments, 4, 716 n-directing effect, 4, 44 2,5-disubstituted synthesis, 4, 116-117 from l,3-dithiolylium-4-olates, 6, 826 electrocyclization, 4, 748-750 electron bombardment, 4, 739 electronic deformation, 4, 722-723 electronic structure, 4, 715 electrophilic substitution, 4, 43, 44, 717-719, 751 directing effects, 4, 752-753 fluorescence spectra, 4, 735-736 fluorinated derivatives, 4, 679 H NMR, 4, 731 Friedel-Crafts acylation, 4, 777 with fused six-membered heterocyclic rings, 4, 973-1036 fused small rings structure, 4, 720-721 gas phase UV spectrum, 4, 734 H NMR, 4, 7, 728-731, 939 solvent effects, 4, 730 substituent constants, 4, 731 halo... [Pg.894]

Dente and Ranzi (in Albright et al., eds.. Pyrolysis Theory and Industrial Practice, Academic Press, 1983, pp. 133-175) Mathematical modehng of hydrocarbon pyrolysis reactions Shah and Sharma (in Carberry and Varma, eds.. Chemical Reaction and Reaction Engineering Handbook, Dekker, 1987, pp. 713-721) Hydroxylamine phosphate manufacture in a slurry reactor Some aspects of a kinetic model of methanol synthesis are described in the first example, which is followed by a second example that describes coping with the multiphcity of reactants and reactions of some petroleum conversion processes. Then two somewhat simph-fied industrial examples are worked out in detail mild thermal cracking and production of styrene. Even these calculations are impractical without a computer. The basic data and mathematics and some of the results are presented. [Pg.2079]

In this process, the feed (natural gas) is pyrolyzed in preheated furnaces lined with a checker work of hot bricks. The pyrolysis reaction produces carbon, which collects on the bricks. The cooled bricks are then... [Pg.119]

Benzannulated azocines can be prepared starting from 4-phenyl-l,2.3-benzotriazine (16), flash-vacuum pyrolysis of which leads to 2-phenylbenzazete (17) (cf. Houben-Weyl. Vol. E16c, p 939), which is stable until about 40 °C and easily enters into cycloaddition reactions with dienes. With tetraphenylcyclopentadienone, a nonisolable adduct is formed which, by loss of carbon monoxide, gives an azabicyclo[4.2.0]octatriene derivative that isomerizes to the 1 -benzazocine 18.22... [Pg.514]

The principal difficulty with these equations arises from the nonlinear term cb. Because of the exponential dependence of cb on temperature, these equations can be solved only by numerical methods. Nachbar has circumvented this difficulty by assuming very fast gas-phase reactions, and has thus obtained preliminary solutions to the mathematical model. He has also examined the implications of the two-temperature approach. Upon careful examination of the equations, he has shown that the model predicts that the slabs having the slowest regression rate will protrude above the material having the faster decomposition rate. The resulting surface then becomes one of alternate hills and valleys. The depth of each valley is then determined by the rate of the fast pyrolysis reaction relative to the slower reaction. [Pg.42]


See other pages where Pyrolysis reaction with is mentioned: [Pg.63]    [Pg.548]    [Pg.90]    [Pg.234]    [Pg.44]    [Pg.424]    [Pg.228]    [Pg.100]    [Pg.63]    [Pg.548]    [Pg.90]    [Pg.234]    [Pg.44]    [Pg.424]    [Pg.228]    [Pg.100]    [Pg.22]    [Pg.86]    [Pg.202]    [Pg.227]    [Pg.288]    [Pg.443]    [Pg.563]    [Pg.564]    [Pg.744]    [Pg.78]    [Pg.27]    [Pg.123]    [Pg.13]    [Pg.34]    [Pg.576]    [Pg.1336]   


SEARCH



Pyrolysis hydroxyl reaction with

Pyrolysis reaction with acyl halides

Pyrolysis reactions

© 2024 chempedia.info