Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyrolysis halides

Imidazolium halides pyrolysis, 5, 449 Imidazolium ions acylation, 5, 402 H NMR, 5, 352 hydrogen exchange, 5, 417 nucleophilic attack, 5, 375 reactivity, 5, 375 ring opening, S, 375 Imidazolium oxides in pyrrole synthesis, 4, 344 Imidazolium perchlorate, 1,3-diphenyl-acylation, 5, 402 Imidazolium salts 1-acetyl-... [Pg.659]

Methylsuccinic acid has been prepared by the pyrolysis of tartaric acid from 1,2-dibromopropane or allyl halides by the action of potassium cyanide followed by hydrolysis by reduction of itaconic, citraconic, and mesaconic acids by hydrolysis of ketovalerolactonecarboxylic acid by decarboxylation of 1,1,2-propane tricarboxylic acid by oxidation of /3-methylcyclo-hexanone by fusion of gamboge with alkali by hydrog. nation and condensation of sodium lactate over nickel oxide from acetoacetic ester by successive alkylation with a methyl halide and a monohaloacetic ester by hydrolysis of oi-methyl-o -oxalosuccinic ester or a-methyl-a -acetosuccinic ester by action of hot, concentrated potassium hydroxide upon methyl-succinaldehyde dioxime from the ammonium salt of a-methyl-butyric acid by oxidation with. hydrogen peroxide from /9-methyllevulinic acid by oxidation with dilute nitric acid or hypobromite from /J-methyladipic acid and from the decomposition products of glyceric acid and pyruvic acid. The method described above is a modification of that of Higginbotham and Lapworth. ... [Pg.56]

Bromocresol purple (5.2...6.8) glutamic and ketoglutaric acids [217], halide and halate anions [91,218, 219] preservatives [220, 221] products of pyrolysis of epoxy resins [222] 5-aminodibenzocyclo-heptane derivatives [223] phenylalkanolamines, eph-edrine [224]... [Pg.45]

The 5-substituted 1,3-dioxolan-4-one 23 is readily deprotonated at the 5 position and can be alkylated with a variety of alkyl halides. The resulting products 24 decompose upon flash vacuum pyrolysis (FVP) at 600°C with loss of acetone... [Pg.92]

Analyses of rate measurements for the decomposition of a large number of basic halides of Cd, Cu and Zn did not always identify obedience to a single kinetic expression [623—625], though in many instances a satisfactory fit to the first-order equation was found. Observations for the pyrolysis of lead salts were interpreted as indications of diffusion control. More recent work [625] has been concerned with the double salts jcM(OH)2 yMeCl2 where M is Cd or Cu and Me is Ca, Cd, Co, Cu, Mg, Mn, Ni or Zn. In the M = Cd series, with the single exception of the zinc salt, reaction was dehydroxylation with concomitant metathesis and the first-order equation was obeyed. Copper (=M) salts underwent a similar change but kinetic characteristics were more diverse and examples of obedience to the first order, the phase boundary and the Avrami—Erofe ev equations [eqns. (7) and (6)] were found for salts containing the various cations (=Me). [Pg.141]

The beryllium halides are stable compounds and consequently their reducti on by hydrogen i s not a practical method of obtaining the metal. Pi Good beryllium deposits are obtained by the pyrolysis of the alkyls as follows ... [Pg.151]

Unsaturated alkyl halides react first by ir-complexation (141), followed by C-X oxidative addition, probably on matrix warm-up [but see the preceding point 3, and see ref. (81), which suggests that pyrolysis and radical production can occur on the crucible insulating material to cause reaction]. [Pg.159]

Disulfides can be prepared by treatment of alkyl halides with disulfide ions and also indirectly by the reaction of Bunte salts (see 10-41) with acid solutions of iodide, thiocyanate ion, or thiourea, or by pyrolysis or treatment with hydrogen peroxide. Alkyl halides also give disulfides when refluxed with sulfur and NaOH, and with piperidinium tetrathiotungstate or piperidinium tetrathiomolybdate. ... [Pg.498]

Pyrolysis of carboxylic acids Dehydrohalogenation of acyl halides Dehalogenation of a-halo acyl halides Rearrangement of diazo ketones (Wolff)... [Pg.1677]

B. By Hydrolysis Reactions.—Details have appeared of the synthesis of dibenzophosphorin oxides (15) from 5-alkyldibenzophospholes, by reaction with methyl propiolate in the presence of water, and of confirmatory syntheses from phosphinic acid chlorides, as shown below. Evidence for the suggested mechanism of the ring-expansion reaction is presented. The hydrolysis of enamine phosphine oxides is an efficient, although somewhat indirect, method for the preparation of j8-ketoalkylphosphine oxides (16) [see Section 3(iii), for the preparation of enamine oxides]. Reasonable yields (48—66%) of trialkylphosphine oxides (17) have been obtained by the alkaline hydrolysis of the products from the pyrolysis at 220 °C of red phosphorus with alkyl halides, in the presence of iodine. [Pg.57]

Recently, Stair and coworkers [10, 11] developed a method to produce gas-phase methyl radicals, and used this to study reactions of methyl groups on Pt surfaces [12] and on molybdenum oxide thin films [13]. In this approach, methyl radicals are produced by pyrolysis of azomethane in a tubular reactor locat inside an ulttahigh vacuum chamber. This method avoids the complications of co-adsorbcd halide atoms, it allows higher covraages to be reached, and it allows tiie study of reactions on oxide and other surfaces that do not dissociate methyl halides effectively. [Pg.327]

Koplitz and co-workers have studied the photolysis of C2H5 via the A2A (3s) state by using 248-nm photolysis radiation and hot ethyl radicals generated from photolysis of ethyl halides.125,126 Chen and co-workers have investigated the photodissociation of jet-cooled ethyl (produced by flash pyrolysis of ethyl iodide and n-propylnitrite) in the region of 245-264 nm... [Pg.489]

The other cause for the xmusually high values of the slopes may be the absence of a solvent as all the data on catalytic eliminations have been obtained in gas-phase experiments. With highly polar transition states, the solvent compensates for the influence of the separation of charges. It should be noted that the correlation of the data for the pyrolysis of alkyl halides similarly gave very high negative values of the slopes (65). [Pg.165]

This technique was quickly adopted by others and it was soon found by F.O. Rice and co-workers that the pyrolysis of many organic compounds at 800 to 1000°C removed metallic mirrors, implicating the formation of free radicals. The cleavage of larger free radicals into smaller radicals and olefins under these conditions, was also proposed (equation 22), as well as chain reactions in which radicals abstract hydrogen from alkanes. Reactions of alkyl halides with metal atoms in the gas phase were also found by M. Polanyi and co-workers to yield alkyl radicals (equation 23). [Pg.13]


See other pages where Pyrolysis halides is mentioned: [Pg.65]    [Pg.339]    [Pg.164]    [Pg.664]    [Pg.665]    [Pg.734]    [Pg.883]    [Pg.69]    [Pg.47]    [Pg.919]    [Pg.141]    [Pg.323]    [Pg.44]    [Pg.1324]    [Pg.1337]    [Pg.264]    [Pg.234]    [Pg.153]    [Pg.269]    [Pg.147]    [Pg.227]    [Pg.163]    [Pg.91]    [Pg.92]    [Pg.69]    [Pg.269]    [Pg.48]    [Pg.30]    [Pg.174]    [Pg.44]    [Pg.56]   
See also in sourсe #XX -- [ Pg.11 , Pg.55 ]

See also in sourсe #XX -- [ Pg.11 , Pg.55 ]




SEARCH



Acyl halides pyrolysis

Alkyl halides pyrolysis

Aryl halides pyrolysis

Butyl halides pyrolysis

Ethyl halides pyrolysis

Isopropyl halides, pyrolysis

Methyl halides pyrolysis

Pyrolysis reaction with acyl halides

Silicon halides pyrolysis

Vinyl halides pyrolysis

© 2024 chempedia.info