Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl radical phase

The reaction shown above for the steam reforming of methatie led to die formation of a mixture of CO and H2, die so-called synthesis gas. The mixture was given this name since it can be used for the preparation of a large number of organic species with the use of an appropriate catalyst. The simplest example of this is the coupling reaction in which medrane is converted to ethane. The process occurs by the dissociative adsorption of methane on the catalyst, followed by the coupling of two methyl radicals to form ethane, which is then desorbed into the gas phase. [Pg.142]

The second set of experiments was carried out in 1929 by Paneth. The decomposition of tetramethyllead was carried out in such a way that the decomposition products were carried by a flow of inert gas over a film of lead metal. The lead was observed to disappear with re-formation of tetramethyllead. The conclusion was reached that methyl radicals must exist long enough in the gas phase to be transported from the point of decomposition to the lead film, where they were reconverted to tetramethyllead. [Pg.664]

The degree of dissociation is very small but the diphenylcyanomethyl radical is sufficiently reactive to induce polymerization in styrene. Methyl radicals or hydrogen atoms bring about polymerization of vinyl monomers in the gas phase.Hydrogen peroxide in the presence of ferrous ions initiates polymerization in the aqueous phase or in aqueous emulsions through generation of hydroxyl radicals according to the Haber-Weiss mechanism... [Pg.109]

Activation energies for chain termination are smaller than for chain propagation, but they are significantly greater than zero. This might not have been anticipated inasmuch as methyl radicals seem to combine in the gas phase without measurable activation energy. ... [Pg.160]

After dosing methyl radicals and chlorine molecules onto CuaSi samples which were cooled to 180 K, mass spectrometry was used to identify the gas phase reaction products upon heating. The silane products have been identified by monitoring their characteristic ions, which include SiCU" " (m/e=168), CHaSiCla (m/e=148), SiCla" " (m/e=133), (CHa)2SiCl2+ (m/e=128), CHaSiCl2+ (m/e=113), (CHa)2SiCl+ (m/e=93), SKCHala" " (m/e=73). All of these ions are detected. On the other hand, no CHaCl (m/e=53) or SiH4+ (m/e=32) are observed. [Pg.309]

Recently, Stair and coworkers [10, 11] developed a method to produce gas-phase methyl radicals, and used this to study reactions of methyl groups on Pt surfaces [12] and on molybdenum oxide thin films [13]. In this approach, methyl radicals are produced by pyrolysis of azomethane in a tubular reactor locat inside an ulttahigh vacuum chamber. This method avoids the complications of co-adsorbcd halide atoms, it allows higher covraages to be reached, and it allows tiie study of reactions on oxide and other surfaces that do not dissociate methyl halides effectively. [Pg.327]

The role of surface-generated gas-phase methyl radicals in the reduction of NO by CH4 over a Sr/LajOj catalyst... [Pg.711]

Methyl radicals have heoi detected in the gas i iase over a Sr/LajO, catalyst during the reaction of CH4 with NO, provided Oj is present in the system. In the absence of O2 the concentration of CHj- radicals decreases almost to the background level. The results indicate that the enhanced effect of Oj on the reduction of NO by CH4 may be due to surface-generated gas-phase CH,- radicals, but in the absence of O2 another reaction pathway may be dominant. Evidence has been found for the presence of CHjNO, a likely intermediate in the radical reaction, at temperatures up to 800 °C. [Pg.711]

The above result was used as a ground-stone of the well known kinetic method of detection which was initially proposed by Myasnikov [75] more than 30 years ago. Above paper dealt with experimental comparison of the change of relative concentration of CH3 radicals in gaseous phase using the stationary values of electric conductivity and initial rate of its change. The experiment yielded perfect coincidence of the measured values. Using methyl radicals as example of adsorption it was established that the resolution of this method was better than 10 particles per cubic centimeter of the ambient volume [75, 76]. [Pg.132]

In order to verify the properties of alkyl radicals adsorbed on semiconductor ZnO film, we conducted experiments, in which methyl radicals were adsorbed from the vapour phase of acetone at room temperature. Under these conditions, the radicals were formed via photolysis of acetone vapours (for details, see Chapter 3) at small pressure of acetone (of about 0.5 Torr). [Pg.265]

Photolysis in the gas phase leads to the quantitative production of nitrogen and methyl radicals. Photolysis in solution, however, results in a shift in the absorption spectrum to longer wavelengths due to the production of a new species, which is identified as the cw-azomethane (the trcms configuration is the normal isomer). Similarly, irradiation of tro/u-azoisopropane<3) results in trans-cis isomerization to the cis isomer ... [Pg.250]

Several other methods have been employed to access the conditions of bubble collapse. Misik et al. studied H20—D20 mixtures and through measurements with the use of spin traps, were able to determine the temperature from the relative rates of O—H and O—D cleavage [21]. They reported temperatures ranging from 2,000 to 4,000 K. Hart et al. developed a method based on the gas phase recombination of methyl radicals (MRR method), formed from the decomposition of methane [22]. They calculated temperatures of 2,000-2,800 K depending on the methane concentration. [Pg.361]

Free radicals formed from an initiator in the gas phase take part in other reactions and recombine with a very low probability (0.1-2%). The decomposition of the initiator in the liquid phase leads to the formation of radical pairs, and the probability of recombination of formed radicals in the liquid phase is high. For example, the photolysis of azomethane in the gas phase in the presence of propane (RH) gives the ratio [C2H6]/[N2] = 0.015 [76]. This ratio is low due to the fast reactions of the formed methyl radicals with propane ... [Pg.124]

In the liquid phase, this ratio was 0.65 due to the recombination of the methyl radical pair in... [Pg.124]

In solution, diffusion apart of the radicals is inhibited by the solvent, resulting in the radicals recombining to form propanone. In the gas phase, however, the radicals do not combine and the acetyl radical breaks down to form carbon monoxide and another methyl radical. This elimination is known as decarbonylation. The methyl radicals then combine and the overall products are ethane and carbon monoxide (Scheme 9.1). [Pg.163]

Chemical/Physical. Anticipated products from the reaction of methyl iodide with ozone or OH radicals in the atmosphere are formaldehyde, iodoformaldehyde, carbon monoxide, and iodine radicals (Cupitt, 1980). With OH radicals, CH2, methyl radical, HOI and water are possible reaction products (Brown et al., 1990). The estimated half-life of methyl iodide in the atmosphere, based on a measured rate constant for the vapor phase reaction with OH radicals, ranges from 535 h to 32 wk (Garraway and Donovan, 1979). [Pg.772]

The oxidation of the methyl radicals formed by DMTC pyrolysis is well understood compared with the tin chemistry. Gas-phase mechanisms describing this chemistry are readily available [61-63]. These reactions lead to the formation of other reactive species that can attack DMTC, including H, O, OH, and HO2. The OH radical in particiflar is a very efficient H-abstractor, and will therefore quickly react with DMTC ... [Pg.34]

Aliphatic amines have much less effect on the later reactions of the gas-phase oxidation of acetaldehyde and ethyl ether than if added at the start of reaction. There is no evidence that they catalyze decomposition of peroxides, but they appear to retard decomposition of peracetic acid. Amines have no marked effect on the rate of decomposition of tert-butyl peroxide and ethyl tert-butyl peroxide. The nature of products formed from the peroxides is not altered by the amine, but product distribution is changed. Rate constants at 153°C. for the reaction between methyl radicals and amines are calculated for a number of primary, secondary, and tertiary amines and are compared with the effectiveness of the amine as an inhibitor of gas-phase oxidation reactions. [Pg.315]

A very useful thermodynamic cycle links three important physical properties homolytic bond dissociation energies (BDE), electron affinities (EA), and acidities. It has been used in the gas phase and solution to determine, sometimes with high accuracy, carbon acidities (Scheme 3.6). " For example, the BDE of methane has been established as 104.9 0.1 kcahmol " " and the EA of the methyl radical, 1.8 0.7 kcal/mol, has been determined with high accuracy by photoelectron spectroscopy (PES) on the methyl anion (i.e., electron binding energy measurements). Of course, the ionization potential of the hydrogen atom is well established, 313.6 kcal/ mol, and as a result, a gas-phase acidity (A//acid) of 416.7 0.7 kcal/mol has been... [Pg.96]

Taylor in 1925 demonstrated that hydrogen atoms generated by the mercury sensitized photodecomposition of hydrogen gas add to ethylene to form ethyl radicals, which were proposed to react with H2 to give the observed ethane and another hydrogen atom. Evidence that polymerization could occur by free radical reactions was found by Taylor and Jones in 1930, by the observation that ethyl radicals formed by the gas phase pyrolysis of diethylmercury or tetraethyllead initiated the polymerization of ethylene, and this process was extended to the solution phase by Cramer. The mechanism of equation (37) (with participation by a third body) was presented for the reaction, - which is in accord with current views, and the mechanism of equation (38) was shown for disproportionation. Staudinger in 1932 wrote a mechanism for free radical polymerization of styrene,but just as did Rice and Rice (equation 32), showed the radical attack on the most substituted carbon (anti-Markovnikov attack). The correct orientation was shown by Flory in 1937. In 1935, O.K. Rice and Sickman reported that ethylene polymerization was also induced by methyl radicals generated from thermolysis of azomethane. [Pg.17]


See other pages where Methyl radical phase is mentioned: [Pg.16]    [Pg.142]    [Pg.94]    [Pg.692]    [Pg.52]    [Pg.1097]    [Pg.206]    [Pg.308]    [Pg.711]    [Pg.1097]    [Pg.423]    [Pg.120]    [Pg.56]    [Pg.16]    [Pg.142]    [Pg.149]    [Pg.56]    [Pg.181]    [Pg.11]    [Pg.319]    [Pg.182]    [Pg.82]    [Pg.334]    [Pg.28]    [Pg.48]    [Pg.338]    [Pg.345]    [Pg.362]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Methyl radical

Radicals methyl radical

© 2024 chempedia.info