Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridoxal 5 -phosphate decarboxylation

Pyridoxal phosphate mainly serves as coenzyme in the amino acid metabolism and is covalently bound to its enzyme via a Schiff base. In the enzymatic reaction, the amino group of the substrate and the aldehyde group of PLP form a Schiff base, too. The subsequent reactions can take place at the a-, (3-, or y-carbon of the respective substrate. Common types of reactions are decarboxylations (formation of biogenic amines), transaminations (transfer of the amino nitrogen of one amino acid to the keto analog of another amino acid), and eliminations. [Pg.1290]

Pyridoxal phosphate is a coenzyme for many enzymes involved in amino acid metabolism, especially in transamination and decarboxylation. It is also the cofactor of glycogen phosphorylase, where the phosphate group is catalytically important. In addition, vitamin Bg is important in steroid hormone action where it removes the hormone-receptor complex from DNA binding, terminating the action of the hormones. In vitamin Bg deficiency, this results in increased sensitivity to the actions of low concentrations of estrogens, androgens, cortisol, and vitamin D. [Pg.491]

By contrast, the cytoplasmic decarboxylation of dopa to dopamine by the enzyme dopa decarboxylase is about 100 times more rapid (Am 4x 10 " M) than its synthesis and indeed it is difficult to detect endogenous dopa in the CNS. This enzyme, which requires pyridoxal phosphate (vitamin B6) as co-factor, can decarboxylate other amino acids (e.g. tryptophan and tyrosine) and in view of its low substrate specificity is known as a general L-aromatic amino-acid decarboxylase. [Pg.141]

Histamine is synthesised by decarboxylation of histidine, its amino-acid precursor, by the specific enzyme histidine decarboxylase, which like glutaminic acid decarboxylase requires pyridoxal phosphate as co-factor. Histidine is a poor substrate for the L-amino-acid decarboxylase responsible for DA and NA synthesis. The synthesis of histamine in the brain can be increased by the administration of histidine, so its decarboxylase is presumably not saturated normally, but it can be inhibited by a fluoromethylhistidine. No high-affinity neuronal uptake has been demonstrated for histamine although after initial metabolism by histamine A-methyl transferase to 3-methylhistamine, it is deaminated by intraneuronal MAOb to 3-methylimidazole acetic acid (Fig. 13.4). A Ca +-dependent KCl-induced release of histamine has been demonstrated by microdialysis in the rat hypothalamus (Russell et al. 1990) but its overflow in some areas, such as the striatum, is neither increased by KCl nor reduced by tetradotoxin and probably comes from mast cells. [Pg.270]

Two routes to phospholipid biosynthesis are known in either, the participation of CTP is necessary. The first route involves phosphatidic acid in phosphoglyceride biosynthesis. Phosphatidic acid reacts with CTP to yield CDP-diglyceride which, as a coenzyme, can participate in the transfer of diglyceride onto serine (or inositol) to produce phosphatidylserine (or phosphatidylinositol). Serine phosphatides are liable to decarboxylation (pyridoxal phosphate acting... [Pg.205]

These enzymes invariably involve a cofactor, pyridoxal phosphate (vitamin B6). In addition, pyridoxal phosphate is also required for most decarboxylations, racemizations, or elimination reactions in which an amino acid is a substrate. Pyridoxal phosphate is not involved in decarboxylations in which the substrate is not an amino acid. So if a question... [Pg.201]

Pyridoxal phosphate is a required coenzyme for many enzyme-catalyzed reactions. Most of these reactions are associated with the metabolism of amino acids, including the decarboxylation reactions involved in the synthesis of the neurotransmitters dopamine and serotonin. In addition, pyridoxal phosphate is required for a key step in the synthesis of porphyrins, including the heme group that is an essential player in the transport of molecular oxygen by hemoglobin. Finally, pyridoxal phosphate-dependent reactions link amino acid metabolism to the citric acid cycle (chapter 16). [Pg.203]

Following the synthesis of 5-hydroxytryptophan (5-HTP) by tryptophan hydroxylase, the enzyme aromatic amino acid decarboxylase (also known as 5-HTP or dopa decarboxylase) then decarboxylates the amino acid to 5-HT. L-Aromatic amino acid decarboxylase is approximately 60% bound in the nerve terminal and requires pyridoxal phosphate as an essential enzyme. [Pg.71]

Most people have heard of antihistamines, even if they have little concept of the nature of histamine. Histamine is the decarboxylation product from histidine, and is formed from the amino acid by the action of the enzyme histidine decarboxylase. The mechanism of this pyridoxal phosphate-dependent reaction will be studied in more detail later (see Section 15.7). [Pg.435]

Pyridoxal phosphate (4) is the most important coenzyme in amino acid metabolism. Its role in transamination reactions is discussed in detail on p. 178. Pyridoxal phosphate is also involved in other reactions involving amino acids, such as decarboxylations and dehydrations. The aldehyde form of pyridoxal phosphate shown here (left) is not generally found in free form. In the absence of substrates, the aldehyde group is covalently bound to the e-amino group of a lysine residue as aldimine ( Schiffs base ). Pyridoxamine phosphate (right) is an intermediate of transamination reactions. It reverts to the aldehyde form by reacting with 2-oxoacids (see p. 178). [Pg.108]

The active form of vitamin Be, pyridoxai phosphate, is the most important coenzyme in the amino acid metabolism (see p. 106). Almost all conversion reactions involving amino acids require pyridoxal phosphate, including transaminations, decarboxylations, dehydrogenations, etc. Glycogen phosphory-lase, the enzyme for glycogen degradation, also contains pyridoxal phosphate as a cofactor. Vitamin Be deficiency is rare. [Pg.368]

This enzyme [EC 4.1.1.12], also known as desulfinase, catalyzes the conversion of aspartate to alanine and carbon dioxide. Pyridoxal phosphate is a required cofactor. The enzyme will also catalyze the decarboxylation of aminomalonate as well as the desulfination of 3-sulfino-alanine to sulfite and alanine. [Pg.69]

This pyridoxal-phosphate-dependent enzyme [EC 4.1.1.18] catalyzes the conversion of L-lysine to form cadaverine and carbon dioxide. 5-Hydroxy-L-lysine can also be decarboxylated by this enzyme. [Pg.434]

These pyridoxal-phosphate-dependent (or pyruvate-dependent) enzymes [EC 4.1.1.65] catalyze the decarboxylation of phosphatidyl-L-serine to produce phospha-tidylethanolamine and carbon dioxide. [Pg.551]

The principal pathways for the biogenesis and metabolism of histamine are well known. Histamine is formed by decarboxylation of the amino acid, L-histidine, a reaction catalyzed by the enzyme, histidine decarboxylase. This decarboxylase is found in both mammalian and non-mammalian species. The mammalian enzyme requires pyridoxal phosphate as a cofactor. The bacterial enzyme has a different pH optimum and utilizes pyruvate as a cofactor (26.27). [Pg.422]

Lactobacillus delbrueckii. In 1953, Rodwell suggested that the histidine decarboxylase of Lactobacillus 30a was not dependent upon pyridoxal phosphate (11). Rodwell based his suggestion upon the fact that the organism lost its ability to decarboxylate ornithine but retained high histidine decarboxylase activity when grown in media deficient in pyridoxine. It was not until 1965 that E. E. Snell and coworkers (12) isolated the enzyme and showed that it was, indeed, free of pyridoxal phosphate. Further advances in characterization of the enzyme were made by Riley and Snell (13) and Recsei and Snell (14) who demonstrated the existence of a pyruvoyl residue and the participation of the pyruvoyl residue in histidine catalysis by forming a Schiff base intermediate in a manner similar to pyridoxal phosphate dependent enzymes. Recent studies by Hackert et al. (15) established the subunit structure of the enzyme which is similar to the subunit structure of a pyruvoyl decarboxylase of a Micrococcus species (16). [Pg.434]

Amino acid decarboxylation takes place by the removal of the a-carboxyl group to give the corresponding amine. Two mechanisms of action have been identified which include a pyridoxal phosphate dependent reaction and a non-pyridoxal phosphate dependent reaction. [Pg.434]

Non-pyridoxal Phosphate Dependent. Figure 2 depicts the postulated mechanism for a non-pyridoxal phosphate catal) zed decarboxylation of histidine to histamine involving a pyruvoyl residue instead of pyridoxal -5 - phosphate (20). Histidine decarboxylases from Lactobacillus 30a and a Micrococcus sp. have been shown to contain a covalently bound pyruvoyl residue on the active site. The pyruvoyl group is covalently bound to the amino group of a phenylalanine residue on the enzyme, and is derived from a serine residue (21) of an inactive proenzyme (22). The pyruvoyl residue acts in a manner similar to pyridoxal phosphate in the decarboxylation reaction. [Pg.435]

Notably, nitrile-degrading enzymes (e.g. nitrilase that converts the CN group to carboxylic acid, and nitrile hydratase that produces an amide function) have been described, and they co-exist with aldoxime-degrading enzymes in bacteria (Reference 111 and references cited therein). Smdies in this area led to the proposal that the aldoxime-nitrile pathway, which is implemented in synthesis of drugs and fine chemicals, occurs as a natural enzymic pathway. It is of interest that the enzyme responsible for bacterial conversion of Af-hydroxy-L-phenylalanine to phenacetylaldoxime, an oxidative decarboxylation reaction, lacks heme or flavin groups which are found in plant or human enzymes that catalyze the same reaction. Its dependency on pyridoxal phosphate raised the possibility that similar systems may also be present in plants . [Pg.637]

The synthesis of alkaloids from L-ornithine starts with decarboxylation by the Pyridoxal Phosphate (PLP) to putrescine (Figure 33) and putrescine metylation by 5 -Adenosylmethionine (SAMe) to A-methylputrescine. The SAM is a naturally occurring reaction, when the departing groups convert... [Pg.74]

Vitamin Bg is a mixture of six interrelated forms pyridoxine (or pyridoxol) (Figure 19.23), pyri-doxal, pyridoxamine, and their 5 -phosphates derivatives. Interconversion is possible between all forms. The active form of the vitamin is pyridoxal phosphate, which is a coenzyme correlated with the function of more than 60 enzymes involved in transamination, deamination, decarboxylation, or desulfuration reactions. [Pg.636]

It is involved as a coenzyme (pyridoxal phosphate) in metabolism of tryptophan, in several metabolic transformations of amino acids including transamination, decarboxylation and racemization. [Pg.387]

Pyridoxal phosphate is the coenzyme for the enzymic processes of transamination, racemization and decarboxylation of amino-acids, and for several other processes, such as the dehydration of serine and the synthesis of tryptophan that involve amino-acids (Braunstein, 1960). Pyridoxal itself is one of the three active forms of vitamin B6 (Rosenberg, 1945), and its biochemistry was established by 1939, in considerable part by the work of A. E. Braunstein and coworkers in Moscow (Braunstein and Kritzmann, 1947a,b,c Konikova et al 1947). Further, the requirement for the coenzyme by many of the enzymes of amino-acid metabolism had been confirmed by 1945. In addition, at that time, E. E. Snell demonstrated a model reaction (1) for transamination between pyridoxal [1] and glutamic acid, work which certainly carried with it the implication of mechanism (Snell, 1945). [Pg.4]

Isoniazid reacts with pyridoxal phosphate to form a hydrazone (Fig. 7.42), which is a very potent inhibitor of pyridoxal phosphate kinase. The hydrazone has a much greater affinity for the enzyme (100—lOOOx) than the normal substratepyridoxal. The result of this is a depletion of tissue pyridoxal phosphate. This cofactor is of importance particularly in nervous tissue for reactions involving decarboxylation and transamination. The decarboxylation reactions are principally affected however, with the result that transamination reactions assume a greater importance. [Pg.340]

Both the ninhydrin reaction and pyridoxal phosphate-catalyzed decarboxylation of amino acids (Chapter 14) are examples of the Strecker degradation. Strecker reported in 1862 that alloxan causes the decarboxylation of alanine to acetaldehyde, C02, and ammonia.c... [Pg.121]


See other pages where Pyridoxal 5 -phosphate decarboxylation is mentioned: [Pg.334]    [Pg.270]    [Pg.236]    [Pg.206]    [Pg.602]    [Pg.88]    [Pg.320]    [Pg.434]    [Pg.125]    [Pg.782]    [Pg.270]    [Pg.271]    [Pg.506]    [Pg.211]    [Pg.135]    [Pg.486]    [Pg.660]    [Pg.662]    [Pg.768]    [Pg.202]    [Pg.204]    [Pg.285]    [Pg.121]   
See also in sourсe #XX -- [ Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 , Pg.311 , Pg.312 , Pg.313 ]

See also in sourсe #XX -- [ Pg.306 , Pg.307 , Pg.308 , Pg.309 , Pg.310 , Pg.311 , Pg.312 , Pg.313 ]




SEARCH



Pyridoxal phosphat

Pyridoxal phosphate

Pyridoxal phosphate-dependent reactions decarboxylation

© 2024 chempedia.info