Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridoxal phosphate aminotransferases

Carbonic anhydrase Pyridoxal phosphate (PLP) Amino groups Aspartate aminotransferase... [Pg.430]

FIGURE 14.22 Glutamate aspartate aminotransferase, an enzyme conforming to a double-displacement bisnbstrate mechanism. Glutamate aspartate aminotransferase is a pyridoxal phosphate-dependent enzyme. The pyridoxal serves as the —NH, acceptor from glntamate to form pyridoxamine. Pyridoxamine is then the amino donor to oxaloacetate to form asparate and regenerate the pyridoxal coenzyme form. (The pyridoxamine enzyme is the E form.)... [Pg.453]

Most amino acids lose their nitrogen atom by a transamination reaction in which the -NH2 group of the amino acid changes places with the keto group of ct-ketoglutarate. The products are a new a-keto acid plus glutamate. The overall process occurs in two parts, is catalyzed by aminotransferase enzymes, and involves participation of the coenzyme pyridoxal phosphate (PLP), a derivative of pyridoxine (vitamin UJ. Different aminotransferases differ in their specificity for amino acids, but the mechanism remains the same. [Pg.1165]

The mechanism of the first part of transamination is shown in Figure 29.14. The process begins with reaction between the a-amino acid and pyridoxal phosphate, which is covalently bonded to the aminotransferase by an iminc linkage between the side-chain -NTI2 group of a lysine residue and the PLP aldehyde group. Deprotonation/reprotonation of the PLP-amino acid imine in steps 2 and 3 effects tautomerization of the imine C=N bond, and hydrolysis of the tautomerized imine in step 4 gives an -keto acid plus pyridoxamine... [Pg.1166]

In nature, aminotransferases participate in a number of metabolic pathways [4[. They catalyze the transfer of an amino group originating from an amino acid donor to a 2-ketoacid acceptor by a simple mechanism. First, an amino group from the donor is transferred to the cofactor pyridoxal phosphate with formation of a 2-keto add and an enzyme-bound pyridoxamine phosphate intermediate. Second, this intermediate transfers the amino group to the 2-keto add acceptor. The readion is reversible, shows ping-pong kinetics, and has been used industrially in the production ofamino acids [69]. It can be driven in one direction by the appropriate choice of conditions (e.g. substrate concentration). Some of the aminotransferases accept simple amines instead of amino acids as amine donors, and highly enantioselective cases have been reported [70]. [Pg.45]

The most widely used method of assessing vitamin Bg status is by the activation of erythrocyte aminotransferases by pyridoxal phosphate added in vitro, expressed as the activation coefficient. [Pg.491]

Pantothenic acid is present in coenzyme A and acyl carrier protein, which act as carriers for acyl groups in metabolic reactions. Pyridoxine, as pyridoxal phosphate, is the coenzyme for several enzymes of amino acid metabolism, including the aminotransferases, and of glycogen phosphorylase. Biotin is the coenzyme for several carboxylase enzymes. [Pg.497]

Rej. R. and Vanderlinde, R. E. Effects of buffers on asperate aminotransferase activity and association of the enzyme with pyridoxal phosphate. Clin. Chem. (1975), 21, 1585-1591. [Pg.220]

In addition to a-allenic a-amino acids, the corresponding allenic derivatives of y-aminobutyric acid (GABA) have also been synthesized as potential inhibitors of the pyridoxal phosphate-dependent enzyme GABA-aminotransferase (Scheme 18.49) [131,138-142]. The synthesis of y-allenyl-GABA (152) and its methylated derivatives was accomplished through Crabbe reaction [131], aza-Cope rearrangement [138] and lactam allenylation [139], whereas the fluoroallene 153 was prepared by SN2 -reduc-tion of a propargylic chloride [141]. [Pg.1027]

Both muscle and liver have aminotransferases, which, unlike deaminases, do not release the amino groups as free ammonium ion. This class of enzymes transfers the amino group from one carbon skeleton (an amino acid) to another (usually a-ketoglutarate, a citric acid cycle intermediate). Pyridoxal phosphate (PLP) derived from vitamin is required to mediate the transfer. [Pg.243]

This enzyme [EC 2.6.1.2], also known as glutamic-pyruvic transaminase and glutamic-alanine transaminase, catalyzes the pyridoxal-phosphate-dependent reaction of alanine with 2-ketoglutarate, resulting on the production of pyruvate and glutamate. 2-Aminobutanoate will also react, albeit slowly. There is another alanine aminotransferase [EC 2.6.1.12], better known as alanine-oxo-acid aminotransferase, which catalyzes the pyridoxal-phosphate-dependent reaction of alanine and a 2-keto acid to generate pyruvate and an amino acid. See also Alanine Glyoxylate Aminotransferase... [Pg.41]

This enzyme [EC 2.6.1.21], also known as D-aspartate aminotransferase, D-amino acid aminotransferase, and D-amino acid transaminase, catalyzes the reversible pyridoxal-phosphate-dependent reaction of D-alanine with a-ketoglutarate to yield pyruvate and D-glutamate. The enzyme will also utilize as substrates the D-stereoisomers of leucine, aspartate, glutamate, aminobutyrate, norva-hne, and asparagine. See o-Amino Acid Aminotransferase... [Pg.41]

This enzyme [EC 2.6.1.18], also known as j8-alanine-pyruvate aminotransferase, catalyzes the reversible pyridoxal-phosphate-dependent reaction of /3-alanine with pyruvate to generate 3-oxopropanoate and alanine. [Pg.41]

This enzyme [EC 5.1.1.15], also referred to as 2-amino-hexano-6-lactam racemase, catalyzes the reversible interconversion of the L- and D-stereoisomers of 2-amino-hexano-6-lactam. The enzyme, which utilizes pyridoxal phosphate, will also catalyze the interconversion of 2-aminopentano-5-lactam and 2-amino-3-mercaptohex-ano-6-lactam. The enzyme exhibits a minor aminotransferase activity with certain a-amino acids. [Pg.54]

This enzyme [EC 2.6.1.42], also referred to as transaminase B, catalyzes the reversible reaction of leucine with a-ketoglutarate (or, 2-oxoglutarate) to produce 4-methyl-2-oxopentanoate and glutamate. The pyridoxal-phosphate-dependent enzyme will also utilize isoleucine and valine as substrates. However, this enzyme is distinct from that of valine pyruvate aminotransferase [EC 2.6.1.66]. See also Leucine Aminotransferase... [Pg.98]

This pyridoxal-phosphate-dependent enzyme [EC 2.6.1.4] catalyzes the reaction of glycine with a-ketoglu-tarate (or, 2-oxoglutarate) to produce glyoxylate and l-glutamate. See also GlycineiOxaloacetate Aminotransferase Glyoxylate Aminotransferase A. E. Braunstein (1973) The Enzymes, 3rd ed., 9, 379. [Pg.320]

This enzyme [EC 2.6.1.36], also called lysine e-aminotransferase, catalyzes the pyridoxal-phosphate-depen-dent reaction of L-lysine with a-ketoglutarate (or, 2-ox-oglutarate) to produce 2-aminoadipate 6-semialdehyde... [Pg.434]

Pyridoxal-phosphate-dependent enzymes, NXACETYLORNITHINE AMINOTRANSFERASE... [Pg.775]

Among the numerous enzymes that utilize pyridoxal phosphate (PLP) as cofactor, the amino acid racemases, amino acid decarboxylases (e.g., aromatic amino acids, ornithine, glutamic acid), aminotransferases (y-aminobutyrate transaminase), and a-oxamine synthases, have been the main targets in the search for fluorinated mechanism-based inhibitors. Pharmaceutical companies have played a very active role in this promising research (control of the metabolism of amino acids and neuroamines is very important at the physiological level). [Pg.257]

L-Canaline is an ineffective antimetabolite of L-ornithine since it has little ability to antagonize ornithine-dependent reactions. On the other hand, it forms a covalently bound Schiff-base complex with the pyridoxal phosphate moiety of Bg-containing enzymes. As such it is a potent inhibitor of many decarboxylases and aminotransferases that utilize this vitamin. [Pg.279]

FIGURE 18-4 Enzyme-catalyzed transaminations. In many aminotransferase reactions, a-ketoglutarate is the amino group acceptor. All aminotransferases have pyridoxal phosphate (PLP) as cofactor. Although the reaction is shown here in the direction of transfer of the amino group to a-ketoglutarate, it is readily reversible. [Pg.660]

All aminotransferases have the same prosthetic group and the same reaction mechanism. The prosthetic group is pyridoxal phosphate (PLP), the coenzyme form of pyridoxine, or vitamin B6. We encountered pyridoxal phosphate in Chapter 15, as a coenzyme in the glycogen phosphorylase reaction, but its role in that reaction is not representative of its usual coenzyme function. Its primary role in cells is in the metabolism of molecules with amino groups. [Pg.660]

FIGURE 18-5 Pyridoxal phosphate, the prosthetic group of aminotransferases. (a) Pyridoxal phosphate (PLP) and its aminated form, pyri-doxamine phosphate, are the tightly bound coenzymes of aminotransferases. The functional groups are shaded, (b) Pyridoxal phosphate is bound to the enzyme through noncovalent interactions and a Schiff-base linkage to a Lys residue at the active site. The steps in the formation of a Schiff base from a primary amine and a carbonyl group... [Pg.661]

Terms in bold are defined in aminotransferases 660 transaminases 660 transamination 660 pyridoxal phosphate (PLP) 660 oxidative deamination 661 l-glutamate dehydrogenase 661 glutamine synthetase 662 glutaminase 663 creatine kinase 664... [Pg.686]

Cyclic interconversion of pyridoxal phosphate and pyridoxamine phosphate during the aspartate aminotransferase reaction. [Pg.249]

Amino groups are tunneled to glutamate from all amino acids except lysine and threonine. The enzymes are aminotransferases, and they are reversible. The two most important of these enzymes are alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Aminotransferases require pyridoxal phosphate as a coenzyme. The presence of elevated levels of aminotransferases in the plasma can be used to diagnose liver disease. [Pg.491]

Figure 3-30 Spectra of the pyridoxal phosphate (PLP), pyridoxamine phosphate (PMP) and apoenzyme forms of pig cytosolic aspartate aminotransferase at pH 8.3, 21 °C. Some excess apoenzyme is present in the sample of the PMP form. Spectra were recorded at 500 MH2. Chemical shift values are in parts per million relative to that of HzO taken as 4.80 ppm at 22°C. Peak A is from a proton on the ring nitrogen of PLP or PMP, peaks B and D are from imidazole NH groups of histidines 143 and 189 (see Fig. 14-6), and peaks C and D are from amide NH groups hydrogen bonded to carboxyl groups. Figure 3-30 Spectra of the pyridoxal phosphate (PLP), pyridoxamine phosphate (PMP) and apoenzyme forms of pig cytosolic aspartate aminotransferase at pH 8.3, 21 °C. Some excess apoenzyme is present in the sample of the PMP form. Spectra were recorded at 500 MH2. Chemical shift values are in parts per million relative to that of HzO taken as 4.80 ppm at 22°C. Peak A is from a proton on the ring nitrogen of PLP or PMP, peaks B and D are from imidazole NH groups of histidines 143 and 189 (see Fig. 14-6), and peaks C and D are from amide NH groups hydrogen bonded to carboxyl groups.
Figure 14-6 Drawing showing pyridoxal phosphate (shaded) and some surrounding protein structure in the active site of cytosolic aspartate aminotransferase. This is the low pH form of the enzyme with an N-protonated Schiff base linkage of lysine 258 to the PLP. The tryptophan 140 ring lies in front of the coenzyme. Several protons, labeled Ha, Hb, and Hd are represented in NMR spectra by distinct resonances whose chemical shifts are sensitive to changes in the active site.169... Figure 14-6 Drawing showing pyridoxal phosphate (shaded) and some surrounding protein structure in the active site of cytosolic aspartate aminotransferase. This is the low pH form of the enzyme with an N-protonated Schiff base linkage of lysine 258 to the PLP. The tryptophan 140 ring lies in front of the coenzyme. Several protons, labeled Ha, Hb, and Hd are represented in NMR spectra by distinct resonances whose chemical shifts are sensitive to changes in the active site.169...

See other pages where Pyridoxal phosphate aminotransferases is mentioned: [Pg.334]    [Pg.453]    [Pg.243]    [Pg.130]    [Pg.154]    [Pg.315]    [Pg.412]    [Pg.590]    [Pg.52]    [Pg.373]    [Pg.195]    [Pg.209]    [Pg.660]    [Pg.660]    [Pg.662]    [Pg.248]    [Pg.57]    [Pg.148]    [Pg.466]    [Pg.478]   
See also in sourсe #XX -- [ Pg.314 , Pg.315 , Pg.316 , Pg.317 , Pg.318 , Pg.319 , Pg.320 , Pg.321 , Pg.322 , Pg.323 , Pg.324 , Pg.325 , Pg.326 , Pg.327 , Pg.328 , Pg.329 , Pg.330 ]

See also in sourсe #XX -- [ Pg.314 , Pg.315 , Pg.316 , Pg.317 , Pg.318 , Pg.319 , Pg.320 , Pg.321 , Pg.322 , Pg.323 , Pg.324 , Pg.325 , Pg.326 , Pg.327 , Pg.328 , Pg.329 , Pg.330 ]




SEARCH



Aminotransferases

Aminotransferases mechanism pyridoxal phosphate

Aminotransferases pyridoxal-phosphate -dependent

Aspartate aminotransferase pyridoxal phosphate

Ornithine aminotransferase pyridoxal 5 -phosphate

Pyridoxal phosphat

Pyridoxal phosphate

Pyridoxal phosphate in aspartate aminotransferase

© 2024 chempedia.info