Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridines free-radical

The alkylation of pyridine [110-86-1] takes place through nucleophiUc or homolytic substitution because the TT-electron-deficient pyridine nucleus does not allow electrophiUc substitution, eg, Friedel-Crafts alkylation. NucleophiUc substitution, which occurs with alkah or alkaline metal compounds, and free-radical processes are not attractive for commercial appHcations. Commercially, catalytic alkylation processes via homolytic substitution of pyridine rings are important. The catalysts effective for this reaction include boron phosphate, alumina, siHca—alurnina, and Raney nickel (122). [Pg.54]

Liquid-phase chlorination of butadiene in hydroxyhc or other polar solvents can be quite compHcated in kinetics and lead to extensive formation of by-products that involve the solvent. In nonpolar solvents the reaction can be either free radical or polar in nature (20). The free-radical process results in excessive losses to tetrachlorobutanes if near-stoichiometric ratios of reactants ate used or polymer if excess of butadiene is used. The "ionic" reaction, if a small amount of air is used to inhibit free radicals, can be quite slow in a highly purified system but is accelerated by small traces of practically any polar impurity. Pyridine, dipolar aptotic solvents, and oil-soluble ammonium chlorides have been used to improve the reaction (21). As a commercial process, the use of a solvent requites that the products must be separated from solvent as well as from each other and the excess butadiene which is used, but high yields of the desired products can be obtained without formation of polymer at higher butadiene to chlorine ratio. [Pg.38]

The reactivity of pyridine relative to that of benzene has been measured using the competitive technique developed by Ingold and his schoool for corresponding studies of electrophilic aromatic substitution. The validity of the method applied to free-radical reactions has been discussed. Three sources of the phenyl radical have been used the results obtained are set out in Table II. [Pg.140]

Pyridine has been phenylated with the following free-radical sources benzenediazonium chloride with aluminum trichloride the Gomberg reaction " phenylhydrazine and metal oxides A -nitroso-acetanilide dibenzoyl peroxide phenylazotriphenylmethane di-phenyliodonium hydroxide and electrolysis of benzoic acid. ° Although 2-phenylpyridine usually accounts for over 50% of the total phenylated product, each of the three phenyl derivatives can be obtained from the reaction by fractional recrystallization of the... [Pg.143]

Goldschmidt and Minsinger " isolated some of the products formed during the decomposition of several diacyl peroxides in pyridine (Table IV). The yields obtained are so far the highest reported for any free-radical alkylation. [Pg.154]

Bromination at 450°C hardly occurs, but when the pumice is impregnated with ferrous or cuprous bromide a much better yield of 2,4,6-tribromopyridine is obtained. When pyridine is brominated at 180°C in the presence or absence of impregnated pumice only 2-bromo- and 2,6-dibromopyridine are formed. These facts are not consistent with an electrophilic substitution, which should take place at the 3-position, On the other hand, the high temperature coefficient of the reaction (cf. Table XV) and the fact that ultraviolet light has no effect on the reaction argue against a simple free-radical sub-stitutiond ... [Pg.172]

Den Hertog and Overhoff - observed that when pyridine in sulfuric acid is added to molten potassium sodium nitrate the 3-nitro derivative is formed at 300°C, whereas at 450°C 2-nitropyridme is the main product. The latter is probably a free-radical process. Schorigin and Toptschiew obtained 7-nitroquinoline by the action of nitrogen peroxide on quinoline at 100°C, possibly through the homolytic addition of NOa. Laville and Waters reported that during the decomposition of pernitrous acid in aqueous acetic acid, quinoline is nitrated in the 6- and 7-positions. They considered that the reaction proceeds as shown in Scheme 3. [Pg.173]

It is difficult to treat the effect of a heteroatom on the localization energies of aromatic systems, but Brown has derived molecular orbital parameters from which he has shown that the rates of attack of the phenyl radical at the three positions of pyridine relatively to benzene agree within 10% with the experimental results. He and his co-workers have shown that the formation of 1-bromoisoquinoline on free-radical bromination of isoquinoline is in agreement with predictions from localization energies for physically reasonable values of the Coulomb parameters, but the observed orientation of the phcnylation of quinoline cannot be correlated with localization ener-... [Pg.176]

Carboxylic acids, a-bromination of 55, 31 CARBOXYLIC ACID CHLORIDES, ketones from, 55, 122 CARBYLAMINE REACTION, 55, 96 Ceric ammonium nitrate [Ammonium hexa mtrocerate(IV)[, 55, 43 Chlorine, 55, 33, 35, 63 CHROMIUM TRIOXIDE-PYRIDINE COMPLEX, preparation in situ, 55, 84 Cinnamomtnle, a-phenyl- [2-Propeneni-tnle 2,3-diphenyl-], 55, 92 Copper(l) iodide, 55, 105, 123, 124 Copper thiophenoxide [Benzenethiol, copper(I) salt], 55, 123 CYCLIZATION, free radical, 55, 57 CYCLOBUTADIENE, 55, 43 Cyclobutadieneiron tricarbonyl [Iron, tn-carbonyl(r)4-l,3-cyclo-butadiene)-], 55,43... [Pg.140]

Naphthalene and other fused ring compounds are so reactive that they react with the catalyst, and therefore tend to give poor yields in Friedel-Crafts alkylation. Heterocyclic rings are also tend to be poor substrates for the reaction. Although some furans and thiophenes have been alkylated, a true alkylation of a pyridine or a quinoline has never been described.However, alkylation of pyridine and other nitrogen heterocycles can be accomplished by a free radical (14-23) and by a nucleophilic method (13-15). [Pg.709]

Nitryl chloride (NO2CI) also adds to alkenes, to give p-halo nitro compounds, but this is a free-radical process. The NO2 goes to the less-substituted carbon. Nitryl chloride also adds to triple bonds to give the expected l-nitro-2-chloro alkenes. The compound FNO2 can be added to alkenes by treatment with HF in HNOa or by addition of the alkene to a solution of nitronium tetrafluoroborate (NOJBF4, see 11-2) in 70% polyhydrogen fluoride-pyridine solution (see also 15-37). [Pg.1046]

This was also accomplished with BaRu(0)2(OH)3. The same type of conversion, with lower yields (20-30%), has been achieved with the Gif system There are several variations. One consists of pyridine-acetic acid, with H2O2 as oxidizing agent and tris(picolinato)iron(III) as catalyst. Other Gif systems use O2 as oxidizing agent and zinc as a reductant. The selectivity of the Gif systems toward alkyl carbons is CH2 > CH > CH3, which is unusual, and shows that a simple free-radical mechanism (see p. 899) is not involved. ° Another reagent that can oxidize the CH2 of an alkane is methyl(trifluoromethyl)dioxirane, but this produces CH—OH more often than C=0 (see 14-4). ... [Pg.1533]

Many pyridine-indole compounds are biologically active. A growing number of methods for the preparation of indolylstannanes have been developed. 2-Trialkylstannylindoles, for example, have been synthesized via directed metalation followed by reaction with tin chloride [91-93]. The latest indolylstannane syntheses include Fukuyama s free radical approach to 2-trialkylstannylindoles from novel isonitrile-alkenes [94], and its extension to an isonitrile-alkyne cascade [95]. Assisted by the chelating effect of the SEM group oxygen atom, direct metalation of 1-SEM-indole and transmetalation with BujSnCl afforded 2-(tributylstannyl)-l//-indole 108, which was then coupled with 2,6-dibromopyridine to give adduct 109. [Pg.205]

The sulfonate hydrides are similarly unstable the chloride hydrides are relatively stable but decompose in the presence of pyridine. These decompositions are quenched by phenolic inhibitors, and a free radical mechanism must be involved. The details are not clear, but it is important that they should be understood in relation to the use of these compounds in stannation and stannolysis reactions (see Sections 3.14.3.3 and Section 3.14.18.3).105 436... [Pg.856]

The formation of l from 1 had been postulated by Vetter [8a]. From the above information we can make the following conclusions (a) l" (atom-free radical) can be produced electrochemically, (b) l" does react with pyridine and may react with similar compounds and (c) recombination of l" may be slow in solution phase. Molecular iodine (di-iodine) the radio-isotope, is being used in the treatment of thyroid disorder. One can ask the question is there any biologically beneficial or toxic effect of iodine atom. There has been no study [8b]. [Pg.263]

The autoxidation mechanism by which 9,10-dihydroanthra-cene is converted to anthraquinone and anthracene in a basic medium was studied. Pyridine was the solvent, and benzyl-trimethylammonium hydroxide was the catalyst. The effects of temperature, base concentration, solvent system, and oxygen concentration were determined. A carbanion-initi-ated free-radical chain mechanism that involves a singleelectron transfer from the carbanion to oxygen is outlined. An intramolecular hydrogen abstraction step is proposed that appears to be more consistent with experimental observations than previously reported mechanisms that had postulated anthrone as an intermediate in the oxidation. Oxidations of several other compounds that are structurally related to 9,10-dihydroanthracene are also reported. [Pg.214]


See other pages where Pyridines free-radical is mentioned: [Pg.421]    [Pg.453]    [Pg.326]    [Pg.170]    [Pg.43]    [Pg.73]    [Pg.66]    [Pg.507]    [Pg.323]    [Pg.401]    [Pg.229]    [Pg.713]    [Pg.941]    [Pg.86]    [Pg.869]    [Pg.309]    [Pg.1217]    [Pg.252]    [Pg.98]    [Pg.320]    [Pg.756]    [Pg.244]    [Pg.245]    [Pg.250]    [Pg.1606]    [Pg.90]    [Pg.36]    [Pg.1414]    [Pg.241]    [Pg.369]    [Pg.45]   
See also in sourсe #XX -- [ Pg.44 , Pg.227 ]




SEARCH



Pyridine 1-oxides free-radical

© 2024 chempedia.info