Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyran Diels-Alder reaction

Vinyl ethers and a,P unsaturated carbonyl compounds cyclize in a hetero-Diels-Alder reaction when heated together in an autoclave with small amounts of hydroquinone added to inhibit polymerisation. Acrolein gives 3,4-dihydro-2-methoxy-2JT-pyran (234,235), which can easily be hydrolysed to glutaraldehyde (236) or hydrogenated to 1,5-pentanediol (237). With 2-meth5lene-l,3-dicarbonyl compounds the reaction is nearly quantitative (238). [Pg.115]

Production of Acrolein Dimer. Acting as both the diene and dienoplule, acrolein undergoes a Diels-Alder reaction with itself to produce acrolein dimer, 3,4-dihydro-2-formyl-2id-pyran, CgHg02 [100-73-2], At room temperature the rate of dimerization is very slow. However, at elevated temperatures and pressures the dimer may be produced in single-pass yields of 33% with selectivities greater than 95%. [Pg.128]

Pyran-3-one, 6-acetoxy-2,6-dihydro-Diels-Alder reaction, 3, 731 dimerization, 3, 722 Pyran-3-one, 6-alkoxy-synthesis, 3, 815... [Pg.765]

Inverse Diels-Alder Reactions. Synthesis of Pyranes... [Pg.123]

Inverse electron-demand Diels-Alder reaction of (E)-2-oxo-l-phenylsulfo-nyl-3-alkenes 81 with enolethers, catalyzed by a chiral titanium-based catalyst, afforded substituted dihydro pyranes (Equation 3.27) in excellent yields and with moderate to high levels of enantioselection [81]. The enantioselectivity is dependent on the bulkiness of the Ri group of the dienophile, and the best result was obtained when Ri was an isopropyl group. Better reaction yields and enantioselectivity [82, 83] were attained in the synthesis of substituted chiral pyranes by cycloaddition of heterodienes 82 with cyclic and acyclic enolethers, catalyzed by C2-symmetric chiral Cu(II) complexes 83 (Scheme 3.16). [Pg.124]

A broad study on the MW-assisted Diels Alder reactions of 2H-pyran-2-ones 50 and 51 with 1,4-naphthoquinone 52 and N-phenylmaleimide 53 (Equations 4.3) supported on silica-gel, K-10 montmorillonite, fitrol and alumina was carried out by Samant and colleagues [41]. [Pg.161]

The Diels-Alder reaction of 2H-pyran-2-ones part IV - Microwave catalyzed Diels-Alder reaction of 4,6-disubstituted-2H-pyran-2-ones with 1,4-naphthoquinone and N-phenylmaleimide [41a]... [Pg.195]

Today, multi-parallel synthesis lies at the forefront of organic and medicinal chemistry, and plays a major role in lead discovery and lead optimization programs in the pharmaceutical industry. The first solid-phase domino reactions were developed by Tietze and coworkers [6] using a domino Knoevenagel/hetero-Diels-Alder and a domino Knoevenagel/ene protocol. Reaction of solid-phase bound 1,3-dicarbonyl compounds such as 10-22 with aldehydes and enol ethers in the presence of piperidinium acetate led to the 1-oxa-1,3-butadiene 10-23, which underwent an intermolecular hetero-Diels-Alder reaction with the enol ethers to give the resin-bound products 10-24. Solvolysis with NaOMe afforded the desired dihydro-pyranes, 10-25 with over 90 % purity. Ene reactions have also been performed in a similar manner [7]. [Pg.569]

A Lewis acid-induced aza-Diels-Alder reaction between the /3-lactam-imine 295 and 3,4-di hydro-2//-pyran gives the two diastereomeric pyranoquinolines 296 and 297. Under basic conditions, these products rearrange to the amino-substituted pyranoindolizinones, 298 and 299, respectively, with retention of stereochemistry (Scheme 74) <2003CEJ3415>. [Pg.917]

Further examples of the use of the hDA reaction in dihydropyran synthesis include the formation of the fused pyrans 18 from vinylallenes 17 and aldehydes (Scheme 8) <00TL6781> and a trans-fused dihydropyran containing a phosphonate group 19 . A total synthesis of the 11-oxa steroid system is based on an intramolecular Diels-Alder reaction involving an orthoquinodimethane derived from a benzocyclobutene (Scheme 9) <00TL1767>. [Pg.319]

There are early reviews discussing the chemistry and properties of pseudoazulenes.311312 Unsubstituted pseudoazulenes are rather unstable, but benzocon-densation and substituents stabilize the molecule, for the latter in agreement with the electronegativities of the heteroatoms. No Diels—Alder reactions occur between pseudoazulenes and dienes, a fact which is consistent with a certain degree of aromaticity. A pseudoazulene with a pyranic ring was formed from benzyl and cyclopentadiene with sodium methox-ide.313... [Pg.31]

In addition to the reaction of vinylcarbene complexes with alkynes, further synthetic procedures have been developed in which Fischer-type carbene complexes are used for the preparation of benzenes. Most of these transformations are likely to be mechanistically related to the Dbtz benzannulation reaction, and can be rationalized as sequences of alkyne-insertions, CO-insertions, and electrocycli-zations. A selection of examples is given in Table 2.18. Entry 4 in Table 2.18 is an example of the Diels-Alder reaction (with inverse electron demand) of an enamine with a pyran-2-ylidene complex (see also Section 2.2.7 and Figure 2.36). In this example the adduct initially formed eliminates both chromium hexacarbonyl ([4 -I- 2] cycloreversion) and pyrrolidine to yield a substituted benzene. [Pg.55]

Asymmetric Diels-Alder reactions have also been achieved in the presence of poly(ethylene glycol)-supported chiral imidazohdin-4-one [113] and copper-loaded silica-grafted bis(oxazolines) [114]. Polymer-bound, camphor-based polysiloxane-fixed metal 1,3-diketonates (chirasil-metals) (37) have proven to catalyze the hetero Diels-Alder reaction of benzaldehyde and Danishefsky s diene. Best catalysts were obtained when oxovanadium(lV) and europium(III) where employed as coordinating metals. Despite excellent chemical yields the resulting pyran-4-ones were reported to be formed with only moderate stereoselectivity (Scheme 4.22). The polymeric catalysts are soluble in hexane and could be precipitated by addition of methanol. Interestingly, the polymeric oxovanadium(III)-catalysts invoke opposite enantioselectivities compared with their monomeric counterparts [115]. [Pg.223]

Inverse type hetero-Diels-Alder reactions between p-acyloxy-a-phenylthio substituted a, p-unsaturated cabonyl compounds as 1-oxa-1,3-dienes, enol ethers, a-alkoxy acrylates, and styrenes, respectively, as hetero-dienophiles result in an efficient one step synthesis of highly functionalized 3,4-dihydro-2H-pyrans (hex-4-enopyranosides). These compounds are diastereospecifically transformed into deoxy and amino-deoxy sugars such as the antibiotic ramulosin, in pyridines having a variety of electron donating substituents, in the important 3-deoxy-2-gly-culosonates, in precursors for macrolide synthesis, and in C.-aryl-glucopyranosides. [Pg.182]

Aiming at the pyranose form of sugars, normal type hetero-Diels-Alder reactions were extensively used for the synthesis of functionally substituted dihydropyran and tetrahydropyran systems (5-10) (see routes A - D in the general Scheme 1) which are also important targets in the "Chiron approach" to natural product syntheses (2.) Hetero-Diels-Alder reactions with inverse electron demand such as a, p-unsaturated carbonyl compounds (l-oxa-1,3-dienes) as heterodienes and enol ethers as hetero-dienophiles, are an attractive route for the synthesis of 3,4-dihydro-2H-pyrans (11). [Pg.183]

Dihydrofuran reacts with /3,7-unsaturated a-keto esters with copper or zinc complex catalysts to generate furo[2,3-/ ]pyran derivatives in good yields with high stereoselectivity. The synthesis proceeds via an inverse electron demand hetero-Diels-Alder reaction <2000CC459>. [Pg.301]

Bismuth(lll) chloride catalyzes the intramolecular hetero-Diels-Alder reaction of aldimines, generated in situ from aromatic amines and the A -allyl derivative of o-aminobenzaldehyde, in acetonitrile at reflux to generate [l,6]naphthyridine derivatives <2002TL1573>. The hetero-Diels-Alder reaction of 3-aryl-2-benzoyl-2-propeneni-triles and enol ethers yields 2-alkoxy, 6-diaryl-3,4-dihydro-2//-pyran-5-carbonitriles (Scheme 29) <1997M1157>. [Pg.728]

Diels-Alder reactions have featured heavily during the period of review. Ar-Vinyl-2-oxazolidinone has been reported as a dienophile for the first time, including the preparation of various tetrahydro-277,77/-pyrano[4,3-. ]pyrans <2002SL952>. The heterodiene cycloaddition reaction of 3-formylchromone with a series of ketene acetals formed from C2-symmetric l,2-diarylethane-l,2-diols is completely diastereoselective (Scheme 40) <1995J(P1)2293>. [Pg.732]

Hanessian and Compain have also reported a Lewis acid-promoted inverse electron demand hetero-Diels-Alder reaction between dihydrofurans and dihydropyrans with a-keto-/3,7-unsaturated phosphonates to give stmcturally related products <2002T6521>. High-pressure OTr/o-selective hetero-Diels-Alder reactions between a,/3-unsaturated aldehydes and enol ethers in the presence of lanthanide catalysts have also been reported and give 3,4-dihydro-27/-pyrans. Examples include the use of cyclic enol ethers to give 2,3,4,4a,5,8a-hexahydro-277,577-pyrano[2,3-. ]pyrans <1995T8383>. [Pg.737]

Diels-Alder reactions. Diels-Alder reactions between this diene and carbonyl compounds are possible under high pressure (15-25 kbar) and provide a route to 5,6-dihydro-2//-pyranes (2).1 Example ... [Pg.258]

Since the reaction of a /3-dicarbonyl compound with an a,/3-unsaturated aldehyde gives a 2i/-pyran (640) in a single step, Diels-Alder reaction as above provides a new route for aryl annelation (Scheme 146). [Pg.473]

Hetero-Diels-Alder reaction with inverted electron demand between a, 3-unsatu-rated carbonyl compounds (1-oxa-l,3-butadienes 11 Scheme 6) and enol ethers provides an access to 6-alkoxy-3,4-dihydro-2/f-pyrans 12 [31,32]. These heterocycles are also useful... [Pg.619]

Although chromenes are not sufficiently reactive, 2/f-naphtho[ 1,2-6]pyrans (202) add reactive dienophiles such as dimethyl acetylenedicarboxylate in a Diels-Alder reaction. [Pg.673]

When 3,4-dihydro-2//-pyran (555) is given pulses of a laser beam, it decomposes by a retro-Diels-Alder reaction into acrolein and ethylene (78JA6111). 4-Methyl-5,6-dihydro-2//-pyran (555a) when irradiated in methanol through which oxygen is passed gives a mixture of four cyclic products on treatment with sodium borohydride (79JCS(P1)1806). Pyrolysis of the dihydropyran (555) at 350 °C yields butadiene. [Pg.719]

As a result of their accessibility, dihydropyrans provide a useful source of 4//-pyrans. Indeed one of the earliest syntheses of the parent compound involved the pyrolysis of 2-acetoxy-3,4-dihydropyran (165) (62JA2452). The concomitant formation of acrolein, vinyl acetate and acetic acid indicates that a reverse Diels-Alder reaction competes with the pyrolysis. [Pg.762]

The expected adduct (430) from the Diels-Alder reaction of the oxazole (429) with diphenylcyclopropenone could not be isolated (Scheme 145) (70JCS(C)552). Instead the pyran-4-one (431) is obtained, resulting from elimination of acetonitrile. This process is essentially irreversible because the pyranone lacks diene properties and nitriles are poor dienophiles. [Pg.815]

The synthetic strategies used for the preparation of pyrans on insoluble supports have mainly been hetero-Diels-Alder reactions of enones with enol ethers and ringclosing olefin metathesis (Table 15.33). Benzopyrans have been prepared by hetero-Diels-Alder reactions of polystyrene-bound o-quinodimethanes with aldehydes. The required quinodimethanes were generated by thermolysis of benzocyclobutanes, which were prepared in solution [308]. Other solid-phase procedures for the preparation of benzopyrans are the palladium-mediated reaction of support-bound 2-iodo-phenols with 1,4-dienes (Entry 5, Table 15.33) and the intramolecular Knoevenagel... [Pg.450]


See other pages where Pyran Diels-Alder reaction is mentioned: [Pg.173]    [Pg.706]    [Pg.762]    [Pg.764]    [Pg.343]    [Pg.216]    [Pg.295]    [Pg.522]    [Pg.503]    [Pg.242]    [Pg.366]    [Pg.47]    [Pg.736]    [Pg.473]    [Pg.637]    [Pg.676]    [Pg.688]    [Pg.708]    [Pg.857]    [Pg.1062]   
See also in sourсe #XX -- [ Pg.55 , Pg.67 ]




SEARCH



Inverse Diels-Alder Reactions. Synthesis of Pyranes

Pyran reactions

Pyrans, 3,4-dihydroreaction with dimethyl acetylenedicarboxylate via Diels-Alder reaction

Pyrans, 5,6-dihydrosynthesis via Diels-Alder reactions

© 2024 chempedia.info