Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protonation weak acid

As indicated by titration data (Figures 6 and 7), binding of copper in both Neuse and Newport River water decreases with increasing total copper in a manner consistant with a stepwise titration of a number of different ligands and/or binding sites. Binding of copper increases with increasing pH consistant with reactions with protonated weak acids. [Pg.161]

RCOOH protonated weak acid (nnchai ed, more lipid-soinble)... [Pg.3]

The rate at which acids dissociate or give up a proton is a function of the affinity of the acid for the proton. Weak acids, with a high affinity for protons, dissociate relatively slowly. Similarly, weak bases have slower reaction rates than strong bases. Even though the reaction rates of weak acids and bases are slower, they can be considered essentially instantaneous as is shown by the following example for the weak acid HaS, pff, = 7.1. [Pg.94]

Examples of the lader include the adsorption or desorption of species participating in the reaction or the participation of chemical reactions before or after the electron transfer step itself One such process occurs in the evolution of hydrogen from a solution of a weak acid, HA in this case, the electron transfer from the electrode to die proton in solution must be preceded by the acid dissociation reaction taking place in solution. [Pg.603]

The ketone is added to a large excess of a strong base at low temperature, usually LDA in THF at -78 °C. The more acidic and less sterically hindered proton is removed in a kineti-cally controlled reaction. The equilibrium with a thermodynamically more stable enolate (generally the one which is more stabilized by substituents) is only reached very slowly (H.O. House, 1977), and the kinetic enolates may be trapped and isolated as silyl enol ethers (J.K. Rasmussen, 1977 H.O. House, 1969). If, on the other hand, a weak acid is added to the solution, e.g. an excess of the non-ionized ketone or a non-nucleophilic alcohol such as cert-butanol, then the tautomeric enolate is preferentially formed (stabilized mostly by hyperconjugation effects). The rate of approach to equilibrium is particularly slow with lithium as the counterion and much faster with potassium or sodium. [Pg.11]

Organohthium and organomagnesium compounds are stable species when prepared m suitable solvents such as diethyl ether They are strongly basic however and react instantly with proton donors even as weakly acidic as water and alcohols A proton is transferred from the hydroxyl group to the negatively polarized carbon of the organometallic compound to form a hydrocarbon... [Pg.592]

An a hydrogen of an aide hyde or a ketone is more acidic than most other protons bound to carbon Aldehydes and ketones are weak acids with pK s in the 16 to 20 range Their enhanced acidity IS due to the electron withdrawing effect of the carbon yl group and the resonance stabi lization of the enolate anion... [Pg.782]

Adenine is a weak base Which one of the three nitrogens designated by arrows in the struc tural formula shown is protonated in acidic solution" A resonance evaluation of the three protonated forms will tell you which one is the most stable... [Pg.1190]

In an acid-base reaction, the reaction unit is the proton. For an acid, the number of reaction units is given by the number of protons that can be donated to the base and for a base, the number of reaction units is the number of protons that the base can accept from the acid. In the reaction between H3PO4 and NaOH, for example, the weak acid H3PO4 can donate all three of its protons to NaOH, whereas the strong base NaOH can accept one proton. Thus, we write... [Pg.22]

Strong and Weak Acids The reaction of an acid with its solvent (typically water) is called an acid dissociation reaction. Acids are divided into two categories based on the ease with which they can donate protons to the solvent. Strong acids, such as Fid, almost completely transfer their protons to the solvent molecules. [Pg.140]

Weak acids, of which aqueous acetic acid is one example, cannot completely donate their acidic protons to the solvent. Instead, most of the acid remains undissociated, with only a small fraction present as the conjugate base. [Pg.140]

Monoprotic weak acids, such as acetic acid, have only a single acidic proton and a single acid dissociation constant. Some acids, such as phosphoric acid, can donate more than one proton and are called polyprotic weak acids. Polyprotic acids are described by a series of acid dissociation steps, each characterized by it own acid dissociation constant. Phosphoric acid, for example, has three acid dissociation reactions and acid dissociation constants. [Pg.141]

Multiprotic weak acids can be used to prepare buffers at as many different pH s as there are acidic protons. For example, a diprotic weak acid can be used to prepare buffers at two pH s and a triprotic weak acid can be used to prepare three different buffers. The Henderson-Hasselbalch equation applies in each case. Thus, buffers of malonic acid (pKai = 2.85 and = 5.70) can be prepared for which... [Pg.170]

EDTA Is a Weak Acid Besides its properties as a ligand, EDTA is also a weak acid. The fully protonated form of EDTA, HeY, is a hexaprotic weak acid with successive pKa values of... [Pg.315]

Cyanuric acid is a titrable weak acid (pffai — 6.88, pifa2 — H-40, pffas — 13.5) (10). The pH of a saturated aqueous solution of pure CA at room temperature is - 4.8. Thermodynamic properties of CA are given ia Table 1. Spectroscopic data are available (1 3). Proton nmr is of limited usefulness because of proton exchange and CA s symmetry and low solubiUty. Nuclear quadmpole resonance measurements ( " N) have been reported (12). [Pg.417]

Lateral interactions between the adsorbed molecules can affect dramatically the strength of surface sites. Coadsorption of weak acids with basic test molecules reveal the effect of induced Bronsted acidity, when in the presence of SO, or NO, protonation of such bases as NH, pyridine or 2,6-dimethylpyridine occurs on silanol groups that never manifest any Bronsted acidity. This suggests explanation of promotive action of gaseous acids in the reactions catalyzed by Bronsted sites. Just the same, presence of adsorbed bases leads to the increase of surface basicity, which can be detected by adsorption of CHF. ... [Pg.431]

The results supported the proposal of Glu-165 as the general base and suggested the novel possibility of neutral histidine acting as an acid, contrary to the expectation that His-95 was protonated [26,58]. The conclusion that the catalytic His-95 is neutral has been confinned by NMR spectroscopy [60]. The selection of neutral imidazole as the general acid catalyst has been discussed in terms of achieving a pX, balance with the weakly acidic intermediate. This avoids the thermodynamic trap that would result from a too stable enediol intermediate, produced by reaction with the more acidic imidazolium [58]. [Pg.228]

By analogy with the kinetic protonation of steroidal zl -enolate anions with weak acids such as acetic acid, which proceeds at the C-4 atom, since the maximum negative charge resides at this position (54,55), the kinetic protonation of the -dienamines with weak acids also occurs at this... [Pg.32]

It is interesting to note that the hydrolysis of certain Schiff bases in weakly acidic solutions shows a similar mechanism (22). N-protonated substituted benzylidene-t-butylamines react with hydroxide ions to amino alcohols in the rate-determining step, and at lower pH the rate is almost entirely determined by attack of water on the protonated Schiff bases as a consequence of the rapidly decreasing concentration of hydroxide ions. [Pg.110]

Because of the high acidity of H2SO4 itself, bases form the largest class of electrolytes and only few acids (proton donors) arc known in this solvent system. As noted above, H2S2O7 acts as a proton donor to H2SO4 and HSO3F is also a weak acid ... [Pg.712]

Methylcyclohexanone, pK 20, is typical of a weak acid that undergo H/D exchange. Identify the acidic protons of 2-methylcyclohexanone, i.e., those most susceptible to attack by base, as positions for which the value of the lowest-unoccupied molecular orbital (LUMO) is large. Use a LUMO map (the value of the LUMO mapped onto the electron density surface). Does this analysis correctly anticipate which of the anions obtained by deprotonation of 2-methylcyclohexanone is actually most stable Are any of the other ions of comparable stability, or are they aU much less stable ... [Pg.161]


See other pages where Protonation weak acid is mentioned: [Pg.178]    [Pg.37]    [Pg.412]    [Pg.3]    [Pg.155]    [Pg.178]    [Pg.37]    [Pg.412]    [Pg.3]    [Pg.155]    [Pg.52]    [Pg.373]    [Pg.87]    [Pg.591]    [Pg.195]    [Pg.464]    [Pg.466]    [Pg.26]    [Pg.182]    [Pg.22]    [Pg.258]    [Pg.265]    [Pg.310]    [Pg.59]    [Pg.56]    [Pg.72]    [Pg.224]    [Pg.56]    [Pg.413]    [Pg.515]    [Pg.30]    [Pg.92]   
See also in sourсe #XX -- [ Pg.71 ]




SEARCH



Acids protonic

Proton acids

Proton acids, weak

Proton acids, weak hydrobromide

Weak acids

Weak proton acids, reaction

Weakly acidic

© 2024 chempedia.info