Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proton chloroplasts

The thylakoid membrane is asymmetrically organized, or sided, like the mitochondrial membrane. It also shares the property of being a barrier to the passive diffusion of H ions. Photosynthetic electron transport thus establishes an electrochemical gradient, or proton-motive force, across the thylakoid membrane with the interior, or lumen, side accumulating H ions relative to the stroma of the chloroplast. Like oxidative phosphorylation, the mechanism of photophosphorylation is chemiosmotic. [Pg.727]

In chloroplasts, the value of AT is typically —50 to —100 mV, and the pH gradient is equivalent to about 3 pH units, so that — (2.3 i T/S ) ApH = —200 mV. This situation contrasts with the mitochondrial proton-motive force, where the membrane potential contributes relatively more to bsp than does the pH gradient. [Pg.727]

FIGURE 22.27 Light-induced pH changes in chloroplast compartments. Illumination of chloroplasts leads to proton pumping and pH changes in the chloroplast, such that the pH within the thylakoid space falls and the pH of the stroma rises. These pH changes modulate the activity of key Calvin cycle enzymes. [Pg.736]

As discussed in Section 22.7, illumination of chloroplasts leads to light-driven pumping of protons into the thylakoid lumen, which causes pH changes in both the stroma and the thylakoid lumen (Figure 22.27). The stromal pH rises, typically to pH 8. Because rubisco and rubisco activase are more active at pH 8, COg fixation is activated as stromal pH rises. Fructose-1,6-bisphosphatase, ribulose-5-phosphate kinase, and glyceraldehyde-3-phosphate dehydrogenase all have alkaline pH optima. Thus, their activities increase as a result of the light-induced pH increase in the stroma. [Pg.736]

Assuming that the concentrations of ATP, ADP, and P in chloroplasts are 3 mM, 0.1 mM, and 10 mM, respectively, what is the AG for ATP synthesis under these conditions Photosynthetic electron transport establishes the proton-motive force driving photophosphorylation. What redox potential difference is necessary to achieve ATP synthesis under the foregoing conditions, assuming an electron pair is transferred per molecule of ATP generated ... [Pg.740]

Friedrich, T., Steinmuller, K., Weiss, H. (1995). The proton-pumping respiratory complex I of bacteria and mitochondria and its homologue in chloroplasts. (Review). FEBS Letters 367, 107-111. [Pg.154]

Recent work has shown that bacteria, in common with chloroplasts and mitochondria, are able, through the membrane-bound electron transport chain aerobically, or the membrane-bound adenosine triphosphate (ATP) anerobically, to maintain a gradient of electrical potential and pH such that the interior of the bacterial cell is negahve and alkaline. This potential gradient and the electrical equivalent of the pH difference (1 pH unit = 58 mV at 37°C) give a potential difference across the membrane of 100-180 mV, with the inside negative. The membrane is impermeable to protons, whose extmsion creates the potential described. [Pg.257]

Horton P., Ruban, A.V., Rees D., A. Pascal, Noctor, G.D., and Young, A.J. 1991. Control of the light-harvesting function of chloroplast membranes by the proton concentration in the thylakoid lumen aggregation states of the LHCII complex and the role of zeaxanthin. FEBS Lett. 292 1-4. [Pg.134]

The flow of electrons occurs in a similar manner from the excited pigment to cytochromes, quinones, pheophytins, ferridoxins, etc. The ATP synthase in the mitochondria of a bacterial system resembles that of the chloroplast—chloroplast proton translocating ATP synthase [37]. [Pg.263]

F-ATPases (including the H+- or Na+-translocating subfamilies F-type, V-type and A-type ATPase) are found in eukaryotic mitochondria and chloroplasts, in bacteria and in Archaea. As multi-subunit complexes with three to 13 dissimilar subunits, they are embedded in the membrane and involved in primary energy conversion. Although extensively studied at the molecular level, the F-ATPases will not be discussed here in detail, since their main function is not the uptake of nutrients but the synthesis of ATP ( ATP synthase ) [127-130]. For example, synthesis of ATP is mediated by bacterial F-type ATPases when protons flow through the complex down the proton electrochemical gradient. Operating in the opposite direction, the ATPases pump 3 4 H+ and/or 3Na+ out of the cell per ATP hydrolysed. [Pg.297]

Photosynthetic prokaryotes do not have chloroplasts. Their photosynthetic pigments are embedded in their cell walls. Some use bacteriochlorophyll for light harvesting. In the proteobacteria and archaea, light harvesting is accomplished by the protein rhodopsin, which acts as a photo-driven proton pump that fuels phosphorylation of ADP. [Pg.197]

Transporting ATP synthase [EC 3.6.1.34] in plants, also referred to as chloroplast ATPase and CFiCFo-ATPase, catalyzes the hydrolysis of ATP to produce ADP and orthophosphate. When coupled with proton transport the reverse reaction results in the synthesis of ATP by this multisubunit complex. CFi, isolated from the rest of the membrane-bound complex, retains the ATPase activity but not the proton-translocating activity. [Pg.124]

In contrast to the hydrolysis and synthesis of ATP connected with proton translocation in mitochondria, chloroplasts and bacterial membranes, the energy linked movement of calcium ions gives rise to the appearance of an acid-stable phosphorylated intermediate in the membranes. A cation specific phosphorylation also occurs in the membranes of the sodium potassium transport system183. However, due to the inability to correlate phosphorylation and ion movement in the latter membranes, membrane phosphorylation has been questioned as being a step in the reaction sequence of ion translocation184,18s. Solely the sarcoplasmic calcium transport system allows to correlate directly and quantitatively ion translocation with the phosphoryl transfer reactions. [Pg.40]

Ubiquinone (also called coenzyme Q) and plasto-quinone (Fig. 10-22d, e) are isoprenoids that function as lipophilic electron carriers in the oxidation-reduction reactions that drive ATP synthesis in mitochondria and chloroplasts, respectively. Both ubiquinone and plasto-quinone can accept either one or two electrons and either one or two protons (see Fig. 19-54). [Pg.363]

The mechanism of active transport is of fundamental importance in biology. As we shall see in Chapter 19, the formation of ATP in mitochondria and chloroplasts occurs by a mechanism that is essentially ATP-driven ion transport operating in reverse. The energy made available by the spontaneous flow of protons across a membrane is calculable from Equation 11-3 remember that AG for flow down an electrochemical gradient has a negative value, and AG for transport of ions against an electrochemical gradient has a positive value. [Pg.398]

The reaction catalyzed by F-type ATPases is reversible, so a proton gradient can supply the energy to drive the reverse reaction, ATP synthesis (Fig. 11-40). When functioning in this direction, the F-type ATPases are more appropriately named ATP synthases. ATP synthases are central to ATP production in mitochondria during oxidative phosphorylation and in chloroplasts during photophosphorylation, as well as in eubacteria and archaebacteria. The proton gradient needed to drive ATP synthesis is produced by other types of proton pumps powered by substrate oxidation or sunlight. As noted above, we return to a detailed description of these processes in Chapter 19. [Pg.401]

In addition to NAD and flavoproteins, three other types of electron-carrying molecules function in the respiratory chain a hydrophobic quinone (ubiquinone) and two different types of iron-containing proteins (cytochromes and iron-sulfur proteins). Ubiquinone (also called coenzyme Q, or simply Q) is a lipid-soluble ben-zoquinone with a long isoprenoid side chain (Fig. 19-2). The closely related compounds plastoquinone (of plant chloroplasts) and menaquinone (of bacteria) play roles analogous to that of ubiquinone, carrying electrons in membrane-associated electron-transfer chains. Ubiquinone can accept one electron to become the semi-quinone radical ( QH) or two electrons to form ubiquinol (QH2) (Fig. 19-2) and, like flavoprotein carriers, it can act at the junction between a two-electron donor and a one-electron acceptor. Because ubiquinone is both small and hydrophobic, it is freely diffusible within the lipid bilayer of the inner mitochondrial membrane and can shuttle reducing equivalents between other, less mobile electron carriers in the membrane. And because it carries both electrons and protons, it plays a central role in coupling electron flow to proton movement. [Pg.693]

When protons flow spontaneously down their electrochemical gradient, energy is made available to do work. In mitochondria, chloroplasts, and aerobic bacteria, the electrochemical energy in the proton gradient drives the synthesis of ATP from ADP and P,. We return to the energetics and stoichiometry of ATP synthesis driven by the electrochemical potential of the proton gradient in Section 19.2. [Pg.703]

Like Complex III of mitochondria, cytochrome b6f conveys electrons from a reduced quinone—a mobile, lipid-soluble carrier of two electrons (Q in mitochondria, PQb in chloroplasts)—to a water-soluble protein that carries one electron (cytochrome c in mitochondria, plastocyanin in chloroplasts). As in mitochondria, the function of this complex involves a Q cycle (Fig. 19-12) in which electrons pass, one at a time, from PQBH2 to cytochrome bs. This cycle results in the pumping of protons across the membrane in chloroplasts, the direction of proton movement is from the stromal compartment to the thylakoid lumen, up to four protons moving for each pair of electrons. The result is production of a proton gradient across the thylakoid membrane as electrons pass from PSII to PSI. Because the volume of the flattened thylakoid lumen is small, the influx of a small number of protons has a relatively large effect on lumenal pH. The measured difference in pH between the stroma (pH 8) and the thylakoid lumen (pH 5) represents a 1,000-fold difference in proton concentration—a powerful driving force for ATP synthesis. [Pg.738]

Cyanobacteria can synthesize ATP by oxidative phosphorylation or by photophosphorylation, although they have neither mitochondria nor chloroplasts. The enzymatic machinery for both processes is in a highly convoluted plasma membrane (see Fig. 1-6). Two protein components function in both processes (Fig. 19-55). The proton-pumping cytochrome b6f complex carries electrons from plastoquinone to cytochrome c6 in photosynthesis, and also carries electrons from ubiquinone to cytochrome c6 in oxidative phosphorylation—the role played by cytochrome bct in mitochondria. Cytochrome c6, homologous to mitochondrial cytochrome c, carries electrons from Complex III to Complex IV in cyanobacteria it can also carry electrons from the cytochrome b f complex to PSI—a role performed in plants by plastocyanin. We therefore see the functional homology between the cyanobacterial cytochrome b f complex and the mitochondrial cytochrome bc1 complex, and between cyanobacterial cytochrome c6 and plant plastocyanin. [Pg.738]

The enzyme responsible for ATP synthesis in chloroplasts is a large complex with two functional components, CF0 and CFi (C denoting its location in chloroplasts). CF0 is a transmembrane proton pore composed of several integral membrane proteins and is homologous to mitochondrial F0. CFi is a peripheral... [Pg.742]

Electron microscopy of sectioned chloroplasts shows ATP synthase complexes as knoblike projections on the outside (stromal or N) surface of thylalcoid membranes these complexes correspond to the ATP synthase complexes seen to project on the inside (matrix or N) surface of the inner mitochondrial membrane. Thus the relationship between the orientation of the ATP synthase and the direction of proton pumping is the same in chloroplasts and mitochondria. In both cases, the Fl portion of ATP synthase is located on the more alkaline (N) side of the membrane through which protons flow down their concentration gradient the direction of proton flow relative to Fi is the same in both cases P to N (Fig. 19-58). [Pg.742]

The mechanism of chloroplast ATP synthase is also believed to be essentially identical to that of its mitochondrial analog ADP and P, readily condense to form ATP on the enzyme surface, and the release of this enzyme-bound ATP requires a proton-motive force. Rotational catalysis sequentially engages each of the three JS subunits of the ATP synthase in ATP synthesis, ATP release, and ADP + Pj binding (Figs 19-24, 19-25). [Pg.742]

FIGURE 19-58 Comparison of the topology of proton movement and ATP synthase orientation in the membranes of mitochondria, chloroplasts, and the bacterium E. coli. In each case, orientation of the proton gradient relative to ATP synthase activity is the same. [Pg.742]


See other pages where Proton chloroplasts is mentioned: [Pg.39]    [Pg.40]    [Pg.44]    [Pg.719]    [Pg.737]    [Pg.641]    [Pg.288]    [Pg.297]    [Pg.356]    [Pg.97]    [Pg.173]    [Pg.122]    [Pg.292]    [Pg.342]    [Pg.8]    [Pg.56]    [Pg.384]    [Pg.401]    [Pg.416]    [Pg.690]    [Pg.691]    [Pg.708]    [Pg.733]    [Pg.733]    [Pg.740]    [Pg.740]    [Pg.741]   
See also in sourсe #XX -- [ Pg.300 ]




SEARCH



Chloroplasts proton uptake

Transmembrane Electrochemical Proton Gradients in Chloroplasts

© 2024 chempedia.info