Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proteins protein subunits

Among the essential residues that are not directly involved in the protein—DNA interface or protein-protein (subunit) interface are Gly-93 and Glu-96. These two residues are located close to the proposed Mg " -binding site, in (for Glu-96) or near (for Gly-93) the cluster of negatively charged surface residues, Asp-133, Asp-100, Asp-99, and Asp-26. [Pg.264]

Figure B2.1.7 Transient hole-burned speetra obtained at room temperature with a tetrapyrrole-eontaining light-harvesting protein subunit, the a subunit of C-phyeoeyanin. Top fluoreseenee and absorption speetra of the sample superimposed with die speetnuu of the 80 fs pump pulses used in the experiment, whieh were obtained from an amplified CPM dye laser operating at 620 mn. Bottom absorption-diflferenee speetra obtained at a series of probe time delays. Figure B2.1.7 Transient hole-burned speetra obtained at room temperature with a tetrapyrrole-eontaining light-harvesting protein subunit, the a subunit of C-phyeoeyanin. Top fluoreseenee and absorption speetra of the sample superimposed with die speetnuu of the 80 fs pump pulses used in the experiment, whieh were obtained from an amplified CPM dye laser operating at 620 mn. Bottom absorption-diflferenee speetra obtained at a series of probe time delays.
Figure B2.1.10 Stimulated photon-echo peak-shift (3PEPS) signals. Top pulse sequence and iuterpulse delays t and T. Bottom echo signals scaimed as a fiinction of delay t at tluee different population periods T, obtained with samples of a tetrapyrrole-containing light-harvesting protein subunit, the a subunit of C-phycocyanin. Figure B2.1.10 Stimulated photon-echo peak-shift (3PEPS) signals. Top pulse sequence and iuterpulse delays t and T. Bottom echo signals scaimed as a fiinction of delay t at tluee different population periods T, obtained with samples of a tetrapyrrole-containing light-harvesting protein subunit, the a subunit of C-phycocyanin.
This argument was pointed out almost 30 years ago by Benzinger [49], in a paper which referred to some still earlier work of his, and yet its implications, even more pertinent today given tire wider use of calorimetry in molecular biology, still appear to be largely ignored, an exception being Weber s work on tire association entlialpy of protein subunits [50]. [Pg.2824]

Weber G 1995 van t Hoff revisited enthalpy of association of protein subunits J. Rhys. Chem. 99 1052-9... [Pg.2848]

Steinbacher, S., et al. Crystal structure of P22 tailspike protein interdigitated subunits in a thermostable trimer. Science 265 383-386, 1994. [Pg.87]

The protein-DNA interactions have been analyzed in detail at high resolution in the complex between the 434 repressor fragment and the ORl containing 20mer DNA. A pseudo-twofold symmetry axis relates the halves of this complex. The symmetry is not exact since the nucleotide sequence of the DNA is slightly different in each half (see Table 8.2). However, the interactions between one protein subunit and one half of the DNA are very similar to those between the second subunit and the other half of the DNA since most of the bases that interact with the protein are identical in both halves. Details of the interaction are very similar to those in the complex with the palindromic synthetic 14mer of DNA shown in Figures 8.14 and 8.15. The base pairs at one end of the DNA, 1-14, 2-13, etc. are called base pairs 1, 2, etc. [Pg.138]

No region of the cytochrome penetrates the membrane nevertheless, the cytochrome subunit is an integral part of this reaction center complex, held through protein-protein interactions similar to those in soluble globular multisubunit proteins. The protein-protein interactions that bind cytochrome in the reaction center of Rhodopseudomonas viridis are strong enough to survive the purification procedure. However, when the reaction center of Rhodohacter sphaeroides is isolated, the cytochrome is lost, even though the structures of the L, M, and H subunits are very similar in the two species. [Pg.236]

Allen, J.R, et al. Structure of the reaction center from Rhodobacter sphaeroides R-26 the protein subunits. [Pg.249]

Class 1 and class II MHC molecules bind peptide antigens and present them at the cell surface for interaction with receptors on T cells. The extracellular portion of these molecules consists of a peptide-binding domain formed by two helical regions on top of an eight-stranded antiparallel p sheet, separated from the membrane by two lower domains with immunoglobulin folds. These domains are differently disposed between the two protein subunits in class I and class II molecules. [Pg.320]

Two basic principles govern the arrangement of protein subunits within the shells of spherical viruses. The first is specificity subunits must recognize each other with precision to form an exact interface of noncovalent interactions because virus particles assemble spontaneously from their individual components. The second principle is genetic economy the shell is built up from many copies of a few kinds of subunits. These principles together imply symmetry specific, repeated bonding patterns of identical building blocks lead to a symmetric final structure. [Pg.327]

Figure 16.2 The icosahedron (top) and dodecahedron (bottom) have identical symmetries but different shapes. Protein subunits of spherical viruses form a coat around the nucleic acid with the same symmetry arrangement as these geometrical objects. Electron micrographs of these viruses have shown that their shapes are often well represented by icosahedra. One each of the twofold, threefold, and fivefold symmetry axes is indicated by an ellipse, triangle, and pentagon, respectively. Figure 16.2 The icosahedron (top) and dodecahedron (bottom) have identical symmetries but different shapes. Protein subunits of spherical viruses form a coat around the nucleic acid with the same symmetry arrangement as these geometrical objects. Electron micrographs of these viruses have shown that their shapes are often well represented by icosahedra. One each of the twofold, threefold, and fivefold symmetry axes is indicated by an ellipse, triangle, and pentagon, respectively.
Any symmetric object is built up from smaller pieces that are identical and that are related to each other by symmetry. An icosahedron can therefore be divided into a number of smaller identical pieces called symmetry-related units. Protein subunits are asymmetric objects hence, a symmetry axis cannot pass through them. The minimum number of protein subunits that can form a virus shell with icosahedral symmetry is therefore equal to... [Pg.327]

Figure 16.S Schematic illustration of the way the 60 protein subunits are arranged around the shell of safellite tobacco necrosis virus. Each subunit is shown as an asymmetric A. The view is along one of the threefold axes, as in Figure 16.3a. (a) Three subunifs are positioned on one triangular tile of an Icosahedron, in a similar way to that shown in 16.4a. The red lines represent a different way to divide the surface of the icosahedron into 60 asymmetric units. This representation will be used in the following diagrams because it is easier to see the symmetry relations when there are more than 60 subunits in the shells, (b) All subunits are shown on the surface of the virus, seen in the same orientation as 16.4a. The shell has been subdivided into 60 asymmetric units by the red lines. When the corners are joined to the center of the virus, the particle is divided into 60 triangular wedges, each comprising an asymmetric unit of the virus. In satellite tobacco necrosis virus each such unit contains one polypeptide chain... Figure 16.S Schematic illustration of the way the 60 protein subunits are arranged around the shell of safellite tobacco necrosis virus. Each subunit is shown as an asymmetric A. The view is along one of the threefold axes, as in Figure 16.3a. (a) Three subunifs are positioned on one triangular tile of an Icosahedron, in a similar way to that shown in 16.4a. The red lines represent a different way to divide the surface of the icosahedron into 60 asymmetric units. This representation will be used in the following diagrams because it is easier to see the symmetry relations when there are more than 60 subunits in the shells, (b) All subunits are shown on the surface of the virus, seen in the same orientation as 16.4a. The shell has been subdivided into 60 asymmetric units by the red lines. When the corners are joined to the center of the virus, the particle is divided into 60 triangular wedges, each comprising an asymmetric unit of the virus. In satellite tobacco necrosis virus each such unit contains one polypeptide chain...
Figure 16.6 A T = 3 icosahedral virus structure contains 180 subunits in its protein shell. Each asymmetric unit (one such unit is shown in thick lines) contains three protein subunits A, B, and C. The icosahedral structure is viewed along a threefold axis, the same view as in Figure 16.5. One asymmetric unit is shown in dark colors. Figure 16.6 A T = 3 icosahedral virus structure contains 180 subunits in its protein shell. Each asymmetric unit (one such unit is shown in thick lines) contains three protein subunits A, B, and C. The icosahedral structure is viewed along a threefold axis, the same view as in Figure 16.5. One asymmetric unit is shown in dark colors.
The protein subunits recognize specific parts of the RNA inside the shell... [Pg.332]

The fact that spherical plant viruses and some small single-stranded RNA animal viruses build their icosahedral shells using essentially similar asymmetric units raises the possibility that they have a common evolutionary ancestor. The folding of the main chain in the protein subunits of these viruses supports this notion. [Pg.335]

Figure 16.14 Schematic diagrams of three different viral coat proteins, viewed in approximately the same direction. Beta strands I through 8 form the common jelly roll barrel core, (a) Satellite tobacco necrosis virus coat protein, (b) Subunit VPl from poliovirus. Figure 16.14 Schematic diagrams of three different viral coat proteins, viewed in approximately the same direction. Beta strands I through 8 form the common jelly roll barrel core, (a) Satellite tobacco necrosis virus coat protein, (b) Subunit VPl from poliovirus.
Since all members of this family of RNA phages have homologous coat proteins, their subunits are expected to have the same three-dimensional structure. It remains to be seen if the MS2 fold is also present in any other unrelated viruses. The fold is so far unique for the MS2 subunit, but similar structures have been observed in other proteins such as the major histocompatibility antigen, HLA, which was discussed in Chapter 15. [Pg.339]

X-ray studies at 22.5 A resolution of murine polyomavlrus by 1. Rayment and D.L.D. Caspar at Brandeis University confirmed the presence of these 72 capsomers at the expected positions, but even at low resolution the pentagonal shape of all 72 capsomers was evident (Figure 16.22). They concluded that each capsomer must be a pentameric assembly of the major viral subunit, known as viral protein 1 (VPl). Each of the 60 icosahedral asymmetric units contains 6 VPl subunits, not 7, and the complete shell contains 360 VPl subunits. The 12 VPl pentamers centered on icosahedral fivefold axes are identically related to their five neighbors, but the 60 pentamers centered on pseudosixfold positions "see" each of their 6 neighbors quite differently (Figure 16.23). How can such diversity of interaction be incorporated into the bonding properties of just one type of protein subunit, without compromising specificity and accuracy of assembly ... [Pg.342]

The terms polypeptide and protein are used interchangeably in discussing single polypeptide chains. The term protein broadly defines molecules composed of one or more polypeptide chains. Proteins having only one polypeptide chain are monomeric proteins. Proteins composed of more than one polypeptide chain are multimeric proteins. Multimeric proteins may contain only one kind of polypeptide, in which case they are homomultimeric, or they may be composed of several different kinds of polypeptide chains, in which instance they are heteromultimeric. Greek letters and subscripts are used to denote the polypeptide composition of multimeric proteins. Thus, an ag type protein is a dimer of identical polypeptide subunits, or a homodimer. Hemoglobin (Table 5.1) consists of four polypeptides of two different kinds it is an hetero-multimer. [Pg.110]

Many proteins consist of two or more interacting polypeptide chains of characteristic tertiary structure, each of which is commonly referred to as a subunit of the protein. Subunit organization constitutes another level in the hierarchy of protein structure, defined as the protein s quaternary (4°) structure (Figure 5.10). Questions of quaternary structure address the various kinds of subunits within a protein molecule, the number of each, and the ways in which they interact with one another. [Pg.118]

The subunits of an oligomeric protein typically fold into apparently independent globular conformations and then interact with other subunits. The particular surfaces at which protein subunits interact are similar in nature to the interiors of the individual subunits. These interfaces are closely packed and involve both polar and hydrophobic interactions. Interacting surfaces must therefore possess complementary arrangements of polar and hydrophobic groups. [Pg.201]

FIGURE 6.42 Isologous and heterologous associations between protein subunits. [Pg.201]


See other pages where Proteins protein subunits is mentioned: [Pg.122]    [Pg.122]    [Pg.1986]    [Pg.304]    [Pg.500]    [Pg.503]    [Pg.562]    [Pg.137]    [Pg.140]    [Pg.280]    [Pg.326]    [Pg.328]    [Pg.328]    [Pg.330]    [Pg.331]    [Pg.333]    [Pg.334]    [Pg.417]    [Pg.200]    [Pg.201]    [Pg.202]    [Pg.204]    [Pg.205]   
See also in sourсe #XX -- [ Pg.294 ]




SEARCH



Subunit proteins

© 2024 chempedia.info