Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein ancestral

Several structurally different types of HNLs occur in nature, which likely originated hy convergent evolution from different ancestral proteins. The enzyme from almond (PaHNL) was first crystallized in 1994 and the structure was solved by multiple wavelength anomalous dispersion of a mercury derivative. The first 3D structure analysis of PaHNL was performed in 2001. ° (7 )-PaHNL from almond uses FAD as cofactor and is related to oxidoreductases it exhibits HNL activity only in the oxidized form of FAD." ... [Pg.151]

It has been suggested (Bozzi et ah, 1997 Grant et ah, 1998) that Dps and E. inocua ferritin represent examples of a family of ancestral dodecameric protein which had as function to trap, but not to mineralize, metal ions, and that the ability to oxidize and mineralize iron efficiently and to form fourfold interactions came later. The hollow-cored dodecameric motif exemplified by Dps and E. inocua ferritin has clearly been adapted to a number of functions, since in addition to DNA binding and iron storage, other family members include a novel pilin, a bromoperoxidase and several other proteins of unknown function (Grant et ah, 1998). [Pg.187]

The three-dimensional structure of OxlT, an oxalate/formate antiporter from Oxalobacter formigenes, most recently solved [124], is explicitly different from that of both antiporter NhaA and symporter MelB (see above). There is an obvious twofold symmetry in the organisation of the 12 transmembrane helices. This supports the previous idea that the MFS proteins evolved from a duplication of a 6-TM protein to form a 12-TM protein. Moreover, it is possible that the 6-TM predecessor was created from a duplication of an ancestral 3-TM protein. [Pg.296]

From amino acid compositions, evaluations o7" the nutritional potentials of cucurbit meals and globulins can be calculated according to FA0/WH0 (54). The A E ratios, which are the amounts of each essential amino acid relative to the total amount of essential amino acids, are shown in Table II. These data indicate that, like most other oilseeds, cucurbit seeds are deficient in lysine and sulfur-containing amino acids. However, sulfur-containing amino acids are considerably high in CitrullI us colocynthis (egusi, ancestral watermelon) seed protein and exceed the suggested level in FA0/WH0 reference protein (55). [Pg.258]

The evolutionary hypothesis is that the ancestral molecule of apo(a) was a plasminogen-type protein, having five kringles, that emerged by a duplication event from a protein with one kringle and one serine protease domain about 300 million years ago (12). [Pg.80]

Why did nature use an Fe-S cluster to catalyze this reaction, when an enzyme such as fumarase can catalyze the same type of chemistry in the absence of any metals or other cofactors One speculation would be that since aconitase must catalyze both hydrations and dehydrations, and bind substrate in two orientations, Fe in the comer of a cubane cluster may provide the proper coordination geometry and electronics to do all of these reactions. Another possibility is that the cluster interconversion is utilized in vivo to regulate enzyme activity, and thus, help control cellular levels of citrate. A third, but less likely, explanation is that during evolution an ancestral Fe-S protein, whose primary function was electron transfer, gained the ability to catalyze the aconitase reaction through random mutation. [Pg.368]

Wheat, rye, and barley have a common ancestral origin in the grass family. Oats are more distantly related to the analogous proteins in wheat, rye, and barley and the oat prolamins (avenin) have substantially lower proline content. Avenin accounts for 5-15% of the total protein in oats, whereas in wheat, barley, and rye, prolamins constitute 40-50% of the total protein (Kilmartin et al., 2006). Some investigators believe that there are similarities between the protein structure of oats and some wheat-like sequences, which may indicate that large amounts of oats could potentially be toxic to patients with celiac disease. However, the putative toxic amino acid sequences are less frequent in avenin than in other prolamins, which explains the less toxic nature of oats (Arentz-Hansen et al., 2004 Ellis and Ciclitira, 2001, 2008 Shan et al., 2005 Vader et al., 2002, 2003). [Pg.260]

MAO A and B differ in primary structure and in substrate specificity [5,7]. The two isozymes, located on the mitochondrial outer membranes, have 70% homology in peptide sequence and share common mechanistic details. It is now recognized that these are different proteins encoded by different genes, but probably derived from a common ancestral gene. Crystal structures for both MAO A and B complexes with inhibitors have recently been reported [8]. Serotonin is selectively oxidized by MAO A, whereas benzylamine and 2-phenylethylamine are selective substrates for MAO B. Dopamine, norepinephrine, epinephrine, trypt-amine, and tyramine are oxidized by both MAO A and B in most species [9]. In addition, MAO A is more sensitive to inhibition by clorgyline (1), whereas MAO B is inhibited by low concentrations of L-deprenyl ((f )-( )-deprenyl) (2) [5,6cj. Development of inhibitors that are selective for each isozyme has been an extremely active area of medicinal chemistry [8]. [Pg.663]


See other pages where Protein ancestral is mentioned: [Pg.29]    [Pg.210]    [Pg.300]    [Pg.348]    [Pg.144]    [Pg.599]    [Pg.1317]    [Pg.340]    [Pg.271]    [Pg.839]    [Pg.209]    [Pg.158]    [Pg.32]    [Pg.148]    [Pg.218]    [Pg.59]    [Pg.294]    [Pg.73]    [Pg.88]    [Pg.53]    [Pg.79]    [Pg.101]    [Pg.110]    [Pg.111]    [Pg.160]    [Pg.256]    [Pg.33]    [Pg.109]    [Pg.43]    [Pg.394]    [Pg.414]    [Pg.423]    [Pg.124]    [Pg.186]    [Pg.294]    [Pg.151]    [Pg.64]    [Pg.102]    [Pg.70]    [Pg.204]    [Pg.251]    [Pg.268]   


SEARCH



Evolution ancestral proteins

© 2024 chempedia.info