Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propene production synthesis

Hydroformylation is an important industrial process carried out using rhodium phosphine or cobalt carbonyl catalysts. The major industrial process using the rhodium catalyst is hydroformylation of propene with synthesis gas (potentially obtainable from a renewable resource, see Chapter 6). The product, butyraldehyde, is formed as a mixture of n- and iso- isomers the n-isomer is the most desired product, being used for conversion to butanol via hydrogenation) and 2-ethylhexanol via aldol condensation and hydrogenation). Butanol is a valuable solvent in many surface coating formulations whilst 2-ethylhexanol is widely used in the production of phthalate plasticizers. [Pg.110]

As a new kind of carbon materials, carbon nanofilaments (tubes and fibers) have been studied in different fields [1]. But, until now far less work has been devoted to the catalytic application of carbon nanofilaments [2] and most researches in this field are focused on using them as catalyst supports. When most of the problems related to the synthesis of large amount of these nanostructures are solved or almost solved, a large field of research is expected to open to these materials [3]. In this paper, CNF is tested as a catalyst for oxidative dehydrogenation of propane (ODP), which is an attractive method to improve propene productivity [4]. The role of surface oxygen annplexes in catalyzing ODP is also addressed. [Pg.745]

Homogeneous rhodium-catalyzed hydroformylation (135,136) of propene to -butyraldehyde (qv) was commercialized in 1976. -Butyraldehyde is a key intermediate in the synthesis of 2-ethyIhexanol, an important plasticizer alcohol. Hydroformylation is carried out at <2 MPa (<290 psi) at 100°C. A large excess of triphenyl phosphine contributes to catalyst life and high selectivity for -butyraldehyde (>10 1) yielding few side products (137). Normally, product separation from the catalyst [Rh(P(C2H2)3)3(CO)H] [17185-29-4] is achieved by distillation. [Pg.180]

PROPENE The major use of propene is in the production of polypropylene. Two other propene-derived organic chemicals, acrylonitrile and propylene oxide, are also starting materials for polymer synthesis. Acrylonitrile is used to make acrylic fibers (see Table 6.5), and propylene oxide is one component in the preparation oi polyurethane polymers. Cumene itself has no direct uses but rather serves as the starting material in a process that yields two valuable industrial chemicals acetone and phenol. [Pg.269]

In 1950 the Fischer-Tropsch synthesis was banned in Germany by the allied forces. Sinarol, a high paraffinic kerosene fraction sold by Shell, was used as a substitute. This ban coincided with the rapid development of the European petrochemical industry, and in due time Fischer-Tropsch synthesis applied to the production of paraffins became uneconomic anyway. After the war there was a steady worldwide increase in the demand for surfactants. In order to continually meet the demand for synthetic detergents, the industry was compelled to find a substitute for /z-paraffin. This was achieved by the oligomerization of the propene part of raffinate gases with phosphoric acid catalyst at 200°C and about 20 bars pressure to produce tetrapropene. Tetrapropene was inexpensive, comprising a defined C cut and an olefinic double bond. Instead of the Lewis acid, aluminum chloride, hydrofluoric acid could now be used as a considerably milder, more economical, and easier-to-handle alkylation catalyst [4],... [Pg.42]

Several other important commercial processes need to be mentioned. They are (not necessarily in the order of importance) the low pressure methanol process, using a copper-containing catalyst which was introduced in 1972 the production of acetic add from methanol over RhI catalysts, which has cornered the market the methanol-to-gasoline processes (MTG) over ZSM-5 zeolite, which opened a new route to gasoline from syngas and ammoxidation of propene over mixed-oxide catalysts. In 1962, catalytic steam reforming for the production of synthesis gas and/or hydrogen over nickel potassium alumina catalysts was commercialized. [Pg.74]

The synthesis of aldehydes from alkenes known as hydroformylation using CO and hydrogen and a homogeneous catalyst is a very important industrial process [204]. Today, over seven million tons of oxoproducts are formed each year using this procedure, with the majority of butanal and butanol from propene. To further increase the efficiency of this process it can be combined with other transformations in a domino fashion. Eilbracht and coworkers [205] used a Mukaiyama aldol reaction as a second step, as shown for the substrate 6/2-63 which, after 3 days led to 6/2-65 in 91% yield via the primarily formed adduct 6/2-64 (Scheme 6/2.13). However, employing a reaction time of 20 h gave 6/2-64 as the main product. [Pg.431]

The development of Ir-chiral N,P ligand system opens another promising way for the hydrogenation of allylic alcohol and its derivatives. For example, a cationic Phox-Ir complex catalyzes the hydrogenation of ( )-2-methyl-3-phenyl-9-propen-l-ol in a highly enantioselective fashion.178 With 1 mol.% (5)-92-Ir catalyst, the hydrogenation proceeds completely to provide the chiral alcohol product in 96% ee. Under the same conditions, a para- Bu-substituted chiral alcohol derivative is obtained with 94% ee for the synthesis of lilial (Equation (59)). Heterocyclic N, P-ligand, HetPHOX 113, is also efficient for this reaction.191... [Pg.38]

The first application of a rhodium-ligand system was realized in the LPO-process (low pressure oxo Fig. 18). Huge stirred tank reactors are used, equipped with internal heat exchangers to control the heat of reaction. The solution of the catalyst recycle is simple but efficient. The catalyst remains in the reactor, products and unconverted propene are stripped by a huge excess of synthesis gas. Because of strong foaming, only a part of the reaction volume is used. After the gas has left the reactor, the products are removed by condensing, the big part of synthesis gas is separated from the liquid products and recycled via compressors. The liquid effluent of the gas-liquid separator... [Pg.33]

Chloro-2-(chloromethyl)-1-propene is commercially available but is very expensive (> 45/g for 10 g, Aldrich Chemical Company, 1996). It is commonly used in the synthesis of natural products,5 polymers,6 cryptands and crown ethers,7 compounds of biological and medical importance,8 and is the starting material for the Szeimies synthesis of [1.1.1]propellane.9... [Pg.49]

The synthesis of aldehydes via hydroformylation of alkenes is an important industrial process used to produce in the region of 6 million tonnes a year of aldehydes. These compounds are used as intermediates in the manufacture of plasticizers, soaps, detergents and pharmaceutical products [7], While the majority of aldehydes prepared from alkene hydroformylation are done so in organic solvents, some research in 1975 showed that rhodium complexes with sulfonated phosphine ligands immobilized in water were able to hydroformylate propene with virtually complete retention of rhodium in the aqueous phase [8], Since catalyst loss is a major problem in the production of bulk chemicals of this nature, the process was scaled up, culminating in the Ruhrchemie-Rhone-Poulenc process for hydroformylation of propene, initially on a 120000 tonne per year scale [9], The development of this biphasic process represents one of the major transitions since the discovery of the hydroformylation reaction. The key transitions in this field include [10] ... [Pg.224]

Polymer molecular properties. Making a polymer of high quality is much more complicated than making butanal, for example, because the material properties of a polymer depend heavily on a number of molecular properties. For example, 1% of mistakes in a propene polymer chain can spoil the properties of a polymer completely (crystallinity for instance), while 10% of a by-product in a butanal synthesis can be removed easily by distillation. PVC contains only 0.1% defects as allylic and tertiary chlorides and this necessitates the use of a large package of stabilisers ... [Pg.192]

Propene is used as a starting material for numerous other compounds. Chief among these are isopropyl alcohol, acrylonitrile, and propylene oxide. Isopropyl alcohol results from the hydration of propylene during cracking and is the primary chemical derived from propylene. Isopropyl alcohol is used as a solvent, antifreeze, and as rubbing alcohol, but its major use is for the production of acetone. Acrylonitrile is used primarily as a monomer in the production of acrylic fibers. Polymerized acrylonitrile fibers are produced under the trade names such as Orion (DuPont) and Acrilan (Monsanto). Acrylonitrile is also a reactant in the synthesis of dyes, pharmaceuticals, synthetic rubber, and resins. Acrylonitrile production occurs primarily through ammoxidation of propylene CH3- CH = CH2 + NH3 + 1.5 02—> CH2 = CH - C = N + 3 H20. [Pg.236]

A breakthrough in the hydroformylation of propene was achieved following the synthesis of the water soluble ligand tppts for the preparation of the RhH(CO)(tppts)3 catalyst345 which formed the basis for the development of the Ruhrchemie/Rhone-Poulenc two phase process. This process operates under mild reaction conditions giving excellent n/i ratios and easy separation of products from the catalyst by decantation with virtually no catalyst leaching. [Pg.140]


See other pages where Propene production synthesis is mentioned: [Pg.65]    [Pg.373]    [Pg.321]    [Pg.122]    [Pg.294]    [Pg.348]    [Pg.439]    [Pg.132]    [Pg.316]    [Pg.103]    [Pg.488]    [Pg.455]    [Pg.2]    [Pg.128]    [Pg.319]    [Pg.35]    [Pg.151]    [Pg.50]    [Pg.191]    [Pg.12]    [Pg.109]    [Pg.310]    [Pg.199]    [Pg.97]    [Pg.222]    [Pg.248]    [Pg.115]    [Pg.264]    [Pg.394]    [Pg.217]    [Pg.294]    [Pg.348]   


SEARCH



Propene production

© 2024 chempedia.info