Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propagation reactions reaction

The inhibition of lipid (LH) oxidation may be considered as one of the most important chemical reaction mechanisms that could explain the antioxidant function of flavonoids. In general terms, chain-breaking antioxidants (AH) inhibit or retard lipid oxidation (reactions 1-7) by interfering with initiation [generically represented by reaction 1] or with chain propagating reactions (reactions 2 and 3) by readily donating hydrogen atoms to lipid peroxyl radicals (LOO ) or lipid radicals (L ) (reactions 4 and 5) [Frankel, 1998] ... [Pg.92]

Since the propagation reaction (Reaction 6) and the transfer reaction (Reaction 7) are competitive, the resulting product is a mixture of molecular weights governed by a simple statistical distribution shown in... [Pg.197]

Propagation reactions reactions that involve the consumption and regeneration of active intermediates and in which stable products are formed... [Pg.35]

Reactions (2) and (3) constitute chain-propagating reactions. Reaction (1) is referred to as chain-initiation process and reaction (—1) as a chain-ending step. Application of the steady-state treatment to the Br atoms gives... [Pg.211]

Olefins can participate in chain propagation reactions (reaction 3) according to the same two mechanisms as in initiation reactions ... [Pg.44]

Florvath D and Showalter K 1995 Instabilities in propagating reaction-diffusion fronts of the iodate-arsenous acid reaction J. Chem. Rhys. 102 2471-8... [Pg.1117]

Table 6.4 Rate Constants at 60 C and Activation Energies for Some Propagation Reactions... Table 6.4 Rate Constants at 60 C and Activation Energies for Some Propagation Reactions...
The electron-releasing R group helps stabilize this cation. As with anionic polymerization, the separation of the ions and hence the ease of monomer insertion depends on the reaction medium. The propagation reaction may be written as... [Pg.412]

The formation of copolymers involves the reaction of (at least) two kinds of monomers. This means that each must be capable of undergoing the same propagation reaction, but is is apparent that quite a range of reactivities is compatible with this broad requirement. We shall examine such things as the polarity of monomers, the degree of resonance stabilization they possess and the steric... [Pg.423]

The polymerization mechanism continues to include initiation, termination, and propagation steps. This time, however, there are four distinctly different propagation reactions ... [Pg.424]

The bimetallic mechanism is illustrated in Fig. 7.13b the bimetallic active center is the distinguishing feature of this mechanism. The precise distribution of halides and alkyls is not spelled out because of the exchanges described by reaction (7.Q). An alkyl bridge is assumed based on observations of other organometallic compounds. The pi coordination of the olefin with the titanium is followed by insertion of the monomer into the bridge to propagate the reaction. [Pg.493]

When initiator is first added the reaction medium remains clear while particles 10 to 20 nm in diameter are formed. As the reaction proceeds the particle size increases, giving the reaction medium a white milky appearance. When a thermal initiator, such as AIBN or benzoyl peroxide, is used the reaction is autocatalytic. This contrasts sharply with normal homogeneous polymerizations in which the rate of polymerization decreases monotonicaHy with time. Studies show that three propagation reactions occur simultaneously to account for the anomalous auto acceleration (17). These are chain growth in the continuous monomer phase chain growth of radicals that have precipitated from solution onto the particle surface and chain growth of radicals within the polymer particles (13,18). [Pg.278]

A typical example of a nonpolymeric chain-propagating radical reaction is the anti-Markovnikov addition of hydrogen sulfide to a terminal olefin. The mechanism involves alternating abstraction and addition reactions in the propagating steps ... [Pg.220]

Two secondary propagating reactions often accompany the initial peroxide decomposition radical-induced decompositions and -scission reactions. Both reactions affect the reactivity and efficiency of the initiation process. Peroxydicarbonates and hydroperoxides are particularly susceptible to radical-induced decompositions. In radical-induced decomposition, a radical in the system reacts with undecomposed peroxide, eg ... [Pg.221]

The other secondary propagation reaction that occurs during initiation is -scission as shown in equations 20 and 21 ... [Pg.222]

Chemistry. Free-radical nitrations consist of rather compHcated nitration and oxidation reactions (31). When nitric acid is used in vapor-phase nitrations, the reaction of equation 5 is the main initiating step where NO2 is a free radical, either -N02 or -ON02. Temperatures of >ca 350° are required to obtain a significant amount of initiation, and equation 5 is the rate-controlling step for the overall reaction. Reactions 6 and 7 are chain-propagating steps. [Pg.35]

As the quinone stabilizer is consumed, the peroxy radicals initiate the addition chain propagation reactions through the formation of styryl radicals. In dilute solutions, the reaction between styrene and fumarate ester foUows an alternating sequence. However, in concentrated resin solutions, the alternating addition reaction is impeded at the onset of the physical gel. The Hquid resin forms an intractable gel when only 2% of the fumarate unsaturation is cross-linked with styrene. The gel is initiated through small micelles (12) that form the nuclei for the expansion of the cross-linked network. [Pg.317]

If the initiation reaction is much faster than the propagation reaction, then all chains start to grow at the same time. Because there is no inherent termination step, the statistical distribution of chain lengths is very narrow. The average molecular weight is calculated from the mole ratio of monomer-to-initiator sites. Chain termination is usually accompHshed by adding proton donors, eg, water or alcohols, or electrophiles such as carbon dioxide. [Pg.517]

Propagation. Propagation reactions (eqs. 5 and 6) can be repeated many times before termination by conversion of an alkyl or peroxy radical to a nonradical species (7). Homolytic decomposition of hydroperoxides produced by propagation reactions increases the rate of initiation by the production of radicals. [Pg.223]

Termination. The conversion of peroxy and alkyl radicals to nonradical species terminates the propagation reactions, thus decreasing the kinetic chain length. Termination reactions (eqs. 7 and 8) are significant when the oxygen concentration is very low, as in polymers with thick cross-sections where the oxidation rate is controlled by the diffusion of oxygen, or in a closed extmder. The combination of alkyl radicals (eq. 7) leads to cross-linking, which causes an undesirable increase in melt viscosity. [Pg.223]

Radical Scavengers Hydrogen-donating antioxidants (AH), such as hindered phenols and secondary aromatic amines, inhibit oxidation by competing with the organic substrate (RH) for peroxy radicals. This shortens the kinetic chain length of the propagation reactions. [Pg.223]

As shown, ia the case of chlotination of aEyl chloride, the resonance states of the chloroaEyl radical iatermediates are not symmetrical and their propagation reactions lead to the two different dichloropropene isomers ia an approximate 10 90 ratio (26). In addition, similar reactions result ia further substitution and addition with products such as trichloropropanes, trichloropropenes, tetrachloropropanes, etc ia diminisbing amounts. Propylene dimerization products such as 1,5-hexadiene, benzene, 1-chloropropane, 2-chloropropane, high boiling tars, and coke are also produced ia smaE amounts. [Pg.33]

Deflagration A propagating chemical reaction of a substance in which the reaction front advances into the unreacted substance at less than the sonic velocity in the unreacted material. Where a blast wave is produced that has the potential to cause damage, the term explosive deflagration may be used. [Pg.160]


See other pages where Propagation reactions reaction is mentioned: [Pg.289]    [Pg.536]    [Pg.263]    [Pg.92]    [Pg.165]    [Pg.821]    [Pg.822]    [Pg.10]    [Pg.289]    [Pg.536]    [Pg.263]    [Pg.92]    [Pg.821]    [Pg.822]    [Pg.10]    [Pg.473]    [Pg.433]    [Pg.433]    [Pg.342]    [Pg.344]    [Pg.219]    [Pg.237]    [Pg.101]    [Pg.101]    [Pg.105]    [Pg.350]    [Pg.352]    [Pg.369]    [Pg.346]    [Pg.347]    [Pg.347]    [Pg.348]    [Pg.427]    [Pg.523]    [Pg.501]    [Pg.480]   
See also in sourсe #XX -- [ Pg.4 , Pg.5 , Pg.162 , Pg.165 , Pg.166 ]




SEARCH



Propagation reactions

© 2024 chempedia.info