Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms processes

The author believes that students are well aware of the basic reaction pathways such as substitutions, additions, eliminations, aromatic substitutions, aliphatic nucleophilic substitutions and electrophilic substitutions. Students may follow undergraduate books on reaction mechanisms for basic knowledge of reactive intermediates and oxidation and reduction processes. Reaction Mechanisms in Organic Synthesis provides extensive coverage of various carbon-carbon bond forming reactions such as transition metal catalyzed reactions use of stabilized carbanions, ylides and enamines for the carbon-carbon bond forming reactions and advance level use of oxidation and reduction reagents in synthesis. [Pg.385]

It is the business of chemical kinetics to deal with the rates of chemical reactions. For this purpose theories and techniques for understanding the atomic and molecular processes (reaction mechanisms) taking place in chemical reactions have been developed. Application of the theory, coupled with appropriate experiments, often points the way toward finding means of increasing or decreasing the rate of a given reaction. [Pg.726]

Homogeneous catalysts. With a homogeneous catalyst, the reaction proceeds entirely in the vapor or liquid phase. The catalyst may modify the reaction mechanism by participation in the reaction but is regenerated in a subsequent step. The catalyst is then free to promote further reaction. An example of such a homogeneous catalytic reaction is the production of acetic anhydride. In the first stage of the process, acetic acid is pyrolyzed to ketene in the gas phase at TOO C ... [Pg.46]

The importance of surface science is most often exliibited in studies of adsorption on surfaces, especially in regards to teclmological applications. Adsorption is the first step in any surface chemical reaction or film-growdi process. The mechanisms of adsorption and the properties of adsorbate-covered surfaces are discussed in section Al.7.3. [Pg.283]

Gas-phase reactions play a fundamental role in nature, for example atmospheric chemistry [1, 2, 3, 4 and 5] and interstellar chemistry [6], as well as in many teclmical processes, for example combustion and exliaust fiime cleansing [7, 8 and 9], Apart from such practical aspects the study of gas-phase reactions has provided the basis for our understanding of chemical reaction mechanisms on a microscopic level. The typically small particle densities in the gas phase mean that reactions occur in well defined elementary steps, usually not involving more than three particles. [Pg.759]

In contrast to the ionization of C q after vibrational excitation, typical multiphoton ionization proceeds via the excitation of higher electronic levels. In principle, multiphoton ionization can either be used to generate ions and to study their reactions, or as a sensitive detection technique for atoms, molecules, and radicals in reaction kinetics. The second application is more common. In most cases of excitation with visible or UV laser radiation, a few photons are enough to reach or exceed the ionization limit. A particularly important teclmique is resonantly enlianced multiphoton ionization (REMPI), which exploits the resonance of monocluomatic laser radiation with one or several intennediate levels (in one-photon or in multiphoton processes). The mechanisms are distinguished according to the number of photons leading to the resonant intennediate levels and to tire final level, as illustrated in figure B2.5.16. Several lasers of different frequencies may be combined. [Pg.2135]

The reaction mechanisms of plasma polymerization processes are not understood in detail. Poll et al [34] (figure C2.13.6) proposed a possible generic reaction sequence. Plasma-initiated polymerization can lead to the polymerization of a suitable monomer directly at the surface. The reaction is probably triggered by collisions of energetic ions or electrons, energetic photons or interactions of metastables or free radicals produced in the plasma with the surface. Activation processes in the plasma and the film fonnation at the surface may also result in the fonnation of non-reactive products. [Pg.2807]

All the techniques discussed in this chapter are applicable to single-step reaction mechanism. For multiple-step mechanisms, it is necessary to work through this process for each step in the reaction. [Pg.157]

The first anhydride plant in actual operation using methyl acetate carbonylation was at Kingsport, Tennessee (41). A general description has been given (42) indicating that about 900 tons of coal are processed daily in Texaco gasifiers. Carbon monoxide is used to make 227,000 t/yr of anhydride from 177,000 t/yr of methyl acetate 166,000 t/yr of methanol is generated. Infrared spectroscopy has been used to foUow the apparent reaction mechanism (43). [Pg.77]

Flame or Partial Combustion Processes. In the combustion or flame processes, the necessary energy is imparted to the feedstock by the partial combustion of the hydrocarbon feed (one-stage process), or by the combustion of residual gas, or any other suitable fuel, and subsequent injection of the cracking stock into the hot combustion gases (two-stage process). A detailed discussion of the kinetics for the pyrolysis of methane for the production of acetylene by partial oxidation, and some conclusions as to reaction mechanism have been given (12). [Pg.386]

Direct oxidation yields biacetyl (2,3-butanedione), a flavorant, or methyl ethyl ketone peroxide, an initiator used in polyester production. Ma.nufa.cture. MEK is predominandy produced by the dehydrogenation of 2-butanol. The reaction mechanism (11—13) and reaction equihbtium (14) have been reported, and the process is in many ways analogous to the production of acetone (qv) from isopropyl alcohol. [Pg.489]

Lactams can also be polymerized under anhydrous conditions by a cationic mechanism initiated by strong protic acids, their salts, and Lewis acids, as weU as amines and ammonia (51—53). The complete reaction mechanism is complex and this approach has not as yet been used successfully in a commercial process. [Pg.224]

Reaction Mechanism. The overall reaction in the Birch amp process is as follows... [Pg.262]

Heat transfer and mass transfer occur simultaneously whenever a transfer operation involves a change in phase or a chemical reaction. Of these two situations, only the first is considered herein because in reacting systems the complications of chemical reaction mechanisms and pathways are usually primary (see HeaT-EXCHANGETECHNOLOGy). Even in processes involving phase changes, design is frequendy based on the heat-transfer process alone mass transfer is presumed to add no compHcations. But in fact mass transfer effects do influence and can even limit the process rate. [Pg.95]

Above 40 wt % hydrogen content at room temperature, zirconium hydride is brittle, ie, has no tensile ductiHty, and it becomes more friable with increasing hydrogen content. This behavior and the reversibiHty of the hydride reaction are utilized ki preparing zirconium alloy powders for powder metallurgy purposes by the hydride—dehydride process. The mechanical and physical properties of zirconium hydride, and thek variation with hydrogen content of the hydride, are reviewed in Reference 127. [Pg.433]

Scheme 4 shows in a general manner cyclocondensations considered to involve reaction mechanisms in which nucleophilic heteroatoms condense with electrophilic carbonyl groups in a 1,3-relationship to each other. The standard method of preparation of pyrazoles involves such condensations (see Chapter 4.04). With hydrazine itself the question of regiospecificity in the condensation does not occur. However, with a monosubstituted hydrazine such as methylhydrazine and 4,4-dimethoxybutan-2-one (105) two products were obtained the 1,3-dimethylpyrazole (106) and the 1,5-dimethylpyrazole (107). Although Scheme 4 represents this type of reaction as a relatively straightforward process, it is considerably more complex and an appreciable effort has been expended on its study (77BSF1163). Details of these reactions and the possible variations of the procedure may be found in Chapter 4.04. [Pg.121]

Sohds in divided form, such as powders, pellets, and lumps, are heated and/or cooled in chemical processing for a variety of objectives such as solidification or fusing (Sec. 11), drying and water removal (Sec. 20), solvent recoveiy (Secs. 13 and 20), sublimation (Sec. 17), chemical reactions (Sec. 20), and oxidation. For process and mechanical-design considerations, see the referenced sections. [Pg.1054]

Some stereospecific reactions are listed in Scheme 2.9. Examples of stereoselective reactions are presented in Scheme 2.10. As can be seen in Scheme 2.9, the starting materials in these stereospecific processes are stereoisomeric pairs, and the products are stereoisomeric with respect to each other. Each reaction proceeds to give a single stereoisomer without contamination by the alternative stereoisomer. The stereochemical relationships between reactants and products are determined by the reaction mechanism. Detailed discussion of the mechanisms of these reactions will be deferred until later chapters, but some comments can be made here to illustrate the concept of stereospecificity. [Pg.98]

Because the rates of chemical reactions are controlled by the free energy of the transition state, information about the stmcture of transition states is crucial to understanding reaction mechanism. However, because transition states have only transitory existence, it is not possible to make experimental measurements that provide direct information about their structure.. Hammond has discussed the circumstances under which it is valid to relate transition-state stmcture to the stmcture of reactants, intermediates, and products. His statements concerning transition-state stmcture are known as Hammond s postulate. Discussing individual steps in a reaction mechanism, Hammond s postulate states if two states, as, for example, a transition state and an unstable intermediate, occur consecutively during a reaction process and have neariy the same energy content, their interconversion will involve only a small reorganization of molecular stmcture. ... [Pg.217]

The details of proton-transfer processes can also be probed by examination of solvent isotope effects, for example, by comparing the rates of a reaction in H2O versus D2O. The solvent isotope effect can be either normal or inverse, depending on the nature of the proton-transfer process in the reaction mechanism. D3O+ is a stronger acid than H3O+. As a result, reactants in D2O solution are somewhat more extensively protonated than in H2O at identical acid concentration. A reaction that involves a rapid equilibrium protonation will proceed faster in D2O than in H2O because of the higher concentration of the protonated reactant. On the other hand, if proton transfer is part of the rate-determining step, the reaction will be faster in H2O than in D2O because of the normal primary kinetic isotope effect of the type considered in Section 4.5. [Pg.232]

Although the previous two sections of this chapter emphasized hydrolytic processes, two mechanisms that led to O- or N-acylation were considered. In the discussion of acid-catalyzed ester hydrolysis, it was pointed out that this reaction is reversible (p. 475). Thus, it is possible to acylate alcohols by reaction with a carboxyhc acid. To drive the reaction forward, the alcohol is usually used in large excess, and it may also be necessary to remove water as it is formed. This can be done by azeotropic distillation in some cases. [Pg.484]


See other pages where Reaction mechanisms processes is mentioned: [Pg.250]    [Pg.596]    [Pg.250]    [Pg.250]    [Pg.596]    [Pg.250]    [Pg.784]    [Pg.915]    [Pg.2117]    [Pg.2145]    [Pg.2715]    [Pg.2997]    [Pg.173]    [Pg.216]    [Pg.359]    [Pg.167]    [Pg.412]    [Pg.424]    [Pg.515]    [Pg.369]    [Pg.369]    [Pg.6]    [Pg.228]    [Pg.31]    [Pg.513]    [Pg.321]    [Pg.160]    [Pg.218]    [Pg.228]    [Pg.273]    [Pg.605]    [Pg.728]   
See also in sourсe #XX -- [ Pg.73 ]




SEARCH



Cascade process, reaction mechanism

Mechanical process

Mechanism and Side-reactions of the Monsanto Process

Mechanisms process

Process/catalyst development reaction mechanism

Processing mechanics

Processive mechanism

Reaction Mechanisms Photocatalytic process efficiency

Reaction Mechanisms Reduction process

Reaction mechanism heterogeneous chemical processes

Reaction mechanisms adiabatic processes

Reaction mechanisms elementary processes

Reaction mechanisms nonadiabatic processes

Statistical mechanics reaction-diffusion processes

© 2024 chempedia.info