Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction mechanisms elementary processes

Chemical kinetics as a science has existed for more than a century. It deals with the rates of reactions and the details of how a given reaction proceeds from reactants to products. In a chemical system with many chemical species, there are several questions to be asked What species react with what other species In what temporal order With what catalysts And with what results The answers constitute the macroscopic reaction mechanism. The process can be described macroscopically by listing the reactants, intermediates, products, and all the elementary reactions and catalysts in the reaction system. [Pg.1]

Gas-phase reactions play a fundamental role in nature, for example atmospheric chemistry [1, 2, 3, 4 and 5] and interstellar chemistry [6], as well as in many teclmical processes, for example combustion and exliaust fiime cleansing [7, 8 and 9], Apart from such practical aspects the study of gas-phase reactions has provided the basis for our understanding of chemical reaction mechanisms on a microscopic level. The typically small particle densities in the gas phase mean that reactions occur in well defined elementary steps, usually not involving more than three particles. [Pg.759]

Mechanisms. Mechanism is a technical term, referring to a detailed, microscopic description of a chemical transformation. Although it falls far short of a complete dynamical description of a reaction at the atomic level, a mechanism has been the most information available. In particular, a mechanism for a reaction is sufficient to predict the macroscopic rate law of the reaction. This deductive process is vaUd only in one direction, ie, an unlimited number of mechanisms are consistent with any measured rate law. A successful kinetic study, therefore, postulates a mechanism, derives the rate law, and demonstrates that the rate law is sufficient to explain experimental data over some range of conditions. New data may be discovered later that prove inconsistent with the assumed rate law and require that a new mechanism be postulated. Mechanisms state, in particular, what molecules actually react in an elementary step and what products these produce. An overall chemical equation may involve a variety of intermediates, and the mechanism specifies those intermediates. For the overall equation... [Pg.514]

Assuming that the reaction probability of all the elementary processes is equal in the reaction of 1,4-DCB crystals, the calculated yields of unreacted 1,4-DCB, cyclophane, and oligomer by simulation, should be 1.8, 37.7, and 60.5% by weight, respectively. Furthermore, if all the photoexcited species of the monocyclic dimer are assumed to be converted into cyclophane, these yields should become 6.9, 65.6 and 27.5%. It is, therefore, rather surprising that in an extreme case of the experiment the yield of cyclophane is more than 90% while the amount of unreacted 1,4-DCB is less than 2%. One plausible mechanism to explain this result is that the first formation of cyclophane induces the successive formation of cyclophane so as to enhance its final yield. If such an induction mechanism plays an appreciable role, an optically active cyclophane zone may be formed, at least in a micro spot surrounding the first molecule of cyclophane, as illustrated in Scheme 13. The assumption of an induction mechanism was verified later in the photoreaction of 7 OMe crystals (see p. 151). [Pg.158]

Free radicals are short-lived, highly-reactive transient species that have one or more unpaired electrons. Free radicals are common in a wide range of reactive chemical environments, such as combustion, plasmas, atmosphere, and interstellar environment, and they play important roles in these chemistries. For example, complex atmospheric and combustion chemistries are composed of, and governed by, many elementary processes involving free radicals. Studies of these elementary processes are pivotal to assessing reaction mechanisms in atmospheric and combustion chemistry, and to probing potential energy surfaces (PESs) and chemical reactivity. [Pg.466]

Although reaction rate expressions and reaction stoichiometry are the experimental data most often used as a basis for the postulation of reaction mechanisms, there are many other experimental techniques that can contribute to the elucidation of these molecular processes. The conscientious investigator of reaction mechanisms will draw on a wide variety of experimental and theoretical methods in his or her research program in an attempt to obtain information about the elementary reactions taking... [Pg.86]

Currently, the density functional theory (DFT) method has become the method of choice for the study of reaction mechanism with transition-metals involved. Gradient corrected DFT methods are of particular value for the computational modeling of catalytic cycles. They have been demonstrated in numerous applications for several elementary processes, to be able to provide quantitative information of high accuracy concerning structural and energetic properties of the involved key species and also to be capable of treating large model systems.30... [Pg.177]

Radical polymerization is the most useful method for a large-scale preparation of various kinds of vinyl polymers. More than 70 % of vinyl polymers (i. e. more than 50 % of all plastics) are produced by the radical polymerization process industrially, because this method has a large number of advantages arising from the characteristics of intermediate free-radicals for vinyl polymer synthesis beyond ionic and coordination polymerizations, e.g., high polymerization and copolymerization reactivities of many varieties of vinyl monomers, especially of the monomers with polar and unprotected functional groups, a simple procedure for polymerizations, excellent reproducibility of the polymerization reaction due to tolerance to impurities, facile prediction of the polymerization reactions from the accumulated data of the elementary reaction mechanisms and of the monomer structure-reactivity relationships, utilization of water as a reaction medium, and so on. [Pg.75]

This chapter provides an introduction to several types of homogeneous (single-phase) reaction mechanisms and the rate laws which result from them. The concept of a reaction mechanism as a sequence of elementary processes involving both analytically detectable species (normal reactants and products) and transient reactive intermediates is introduced in Section 6.1.2. In constructing the rate laws, we use the fact that the elementary steps which make up the mechanism have individual rate laws predicted by the simple theories discussed in Chapter 6. The resulting rate law for an overall reaction often differs significantly from the type discussed in Chapters 3 and 4. [Pg.154]

As a matter of fact, cosolvents such as primary alcohols, polyols, di-methylformamide and dimethyl sulfoxide are now almost routinely used to perturb the overall reactions and elementary equilibria or rate processes of the highly organized systems carrying out DNA, RNA, and protein synthesis. However, in spite of the fact that such systems respond well and in a reversible way to these perturbations, cosolvent effects remain relatively poor probes of reaction mechanisms (Hamel, 1972 Voigt et al., 1974 Ballesta and Vasquez, 1973 Crepin et ai, 1975 Nakanishi et al., 1974 Brody and Leautey, 1973). The most common result reported upon addition of increasing amounts of cosolvents is a bell-shaped curve equilibria and rate processes are first stimulated and... [Pg.273]

The knowledge of thermochemistry is also important in early parts of mechanism development. For example, by examining the heats of reaction of competing elementary processes, unlikely reaction paths can be identified a priori and eliminated from further consideration. To illustrate this, consider the following simple unimolecular decomposition processes for CH3CI ... [Pg.111]

Bimolecular processes are very common in biological systems. The binding of a hormone to a receptor is a bimolecular reaction, as is substrate and inhibitor binding to an enzyme. The term bimolecular mechanism applies to those reactions having a rate-limiting step that is bimolecular. See Chemical Kinetics Molecularity Reaction Order Elementary Reaction Transition-State Theory... [Pg.81]

Sulfur, at 345°C for thianthrene tetroxide, or at 250°C for thianthrene 5-oxide, produced thianthrene in good yields. S-Labeling experiments showed that the former took place with 80% replacement of ring sulfur and the latter took place with 91% replacement (73BCJ650), so these processes, whatever their detailed mechanism, do not involve simple reductive cleavage of the S—O bond. In accordance with this, thianthrene 5,5,10,10-tetroxide is converted into selenanthrene by reaction with elementary selenium (1896CB443). [Pg.360]

On the surface, intermediates such as SnO, are assumed to be rapidly oxidized to Sn02. While the first step in this mechanism is reasonable, the remaining reactions do not represent true elementary processes (i.e., gas-phase reactions that occur in a single step). [Pg.8]


See other pages where Reaction mechanisms elementary processes is mentioned: [Pg.65]    [Pg.340]    [Pg.784]    [Pg.2117]    [Pg.2145]    [Pg.431]    [Pg.2]    [Pg.190]    [Pg.56]    [Pg.335]    [Pg.6]    [Pg.645]    [Pg.673]    [Pg.118]    [Pg.51]    [Pg.25]    [Pg.163]    [Pg.88]    [Pg.77]    [Pg.90]    [Pg.98]    [Pg.215]    [Pg.137]    [Pg.131]    [Pg.221]    [Pg.30]    [Pg.170]    [Pg.122]    [Pg.3]    [Pg.79]    [Pg.223]    [Pg.162]    [Pg.369]    [Pg.465]    [Pg.181]    [Pg.2]    [Pg.10]   
See also in sourсe #XX -- [ Pg.950 ]




SEARCH



Elementary mechanisms

Elementary processes

Elementary reaction

Elementary reaction processes

Mechanical process

Mechanisms process

Process reaction mechanism

Processing mechanics

Processive mechanism

© 2024 chempedia.info