Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Probes alkanes

The lubricant properties of alkanethiols and fluorinated alkanes have been studied extensively by scanning probe techniques [163]. In agreement with experiments on LB monolayers it was found that the fluorocarbon monolayers show considerably higher friction than the corresponding hydrocarbon monolayers [164, 165 and 166] even though the fluorocarbons are known to have the lowest surface free energy of all organic materials. [Pg.2625]

Surface SHG [4.307] produces frequency-doubled radiation from a single pulsed laser beam. Intensity, polarization dependence, and rotational anisotropy of the SHG provide information about the surface concentration and orientation of adsorbed molecules and on the symmetry of surface structures. SHG has been successfully used for analysis of adsorption kinetics and ordering effects at surfaces and interfaces, reconstruction of solid surfaces and other surface phase transitions, and potential-induced phenomena at electrode surfaces. For example, orientation measurements were used to probe the intermolecular structure at air-methanol, air-water, and alkane-water interfaces and within mono- and multilayer molecular films. Time-resolved investigations have revealed the orientational dynamics at liquid-liquid, liquid-solid, liquid-air, and air-solid interfaces [4.307]. [Pg.264]

Fig. 17. An homologous series of alkane probes is generally used because good values for their adsorbed molar areas are available [87]. The linearity of the plot (the alkane line ) lends credence to the procedure. Fig. 17. An homologous series of alkane probes is generally used because good values for their adsorbed molar areas are available [87]. The linearity of the plot (the alkane line ) lends credence to the procedure.
Fig. 17. A schematic of the alkane line obtained by inverse gas chromatography (IGC) measurements. The relative retention volume of carrier gas required to elute a series of alkane probe gases is plotted against the molar area of the probe times the. square root of its surface tension. The slope of the plot is yielding the dispersion component of the surface energy of... Fig. 17. A schematic of the alkane line obtained by inverse gas chromatography (IGC) measurements. The relative retention volume of carrier gas required to elute a series of alkane probe gases is plotted against the molar area of the probe times the. square root of its surface tension. The slope of the plot is yielding the dispersion component of the surface energy of...
The technique of IGC may be employed to obtain acid-base information, as suggested by Schultz and Lavielle [99], by using acid and base probe gases on a solid for which the alkane line has already been obtained. If acid-base interaction is involved in the adsorption, the retention volume should be greater than that corresponding to the dispersion force interaction alone, which should be the same as that of the equivalent alkane , i.e. the hypothetical alkane for which the value... [Pg.42]

One of the first studies to predict log P by using potential energy fields calculated using the GRID and CoMFA approaches was done by Kim [60]. The author investigated H, CH3 and H2O probes, and calculated the best models using the hydro-phobic probe H2O for relatively small series (20 or less compounds each) of furans, carbamates, pyridines and pyrazines. A similar study was performed by Waller [61] who predicted a small series of 24 polyhalogenated compounds. Recently, Caron and Ermondi [62] used a new version of Cruciani s software, VolSurf [63], to predict the octanol-water and alkane-water partition coefficients for 152 compounds with r = 0.77, q = 0.72, SDEP = 0.60 for octanol-water and r = 0.76, q = 0.71, SDEP = 0.85 for alkane-water. [Pg.392]

The solvent triangle classification method of Snyder Is the most cosDBon approach to solvent characterization used by chromatographers (510,517). The solvent polarity index, P, and solvent selectivity factors, X), which characterize the relative importemce of orientation and proton donor/acceptor interactions to the total polarity, were based on Rohrscbneider s compilation of experimental gas-liquid distribution constants for a number of test solutes in 75 common, volatile solvents. Snyder chose the solutes nitromethane, ethanol and dloxane as probes for a solvent s capacity for orientation, proton acceptor and proton donor capacity, respectively. The influence of solute molecular size, solute/solvent dispersion interactions, and solute/solvent induction interactions as a result of solvent polarizability were subtracted from the experimental distribution constants first multiplying the experimental distribution constant by the solvent molar volume and thm referencing this quantity to the value calculated for a hypothetical n-alkane with a molar volume identical to the test solute. Each value was then corrected empirically to give a value of zero for the polar distribution constant of the test solutes for saturated hydrocarbon solvents. These residual, values were supposed to arise from inductive and... [Pg.749]

Figure 40 (a) Plot of free energy of adsorption of n-alkane probes vs carbon number 110°C,... [Pg.443]

Considerable interest in the subject of C-H bond activation at transition-metal centers has developed in the past several years (2), stimulated by the observation that even saturated hydrocarbons can react with little or no activation energy under appropriate conditions. Interestingly, gas phase studies of the reactions of saturated hydrocarbons at transition-metal centers were reported as early as 1973 (3). More recently, ion cyclotron resonance and ion beam experiments have provided many examples of the activation of both C-H and C-C bonds of alkanes by transition-metal ions in the gas phase (4). These gas phase studies have provided a plethora of highly speculative reaction mechanisms. Conventional mechanistic probes, such as isotopic labeling, have served mainly to indicate the complexity of "simple" processes such as the dehydrogenation of alkanes (5). More sophisticated techniques, such as multiphoton infrared laser activation (6) and the determination of kinetic energy release distributions (7), have revealed important features of the potential energy surfaces associated with the reactions of small molecules at transition metal centers. [Pg.16]

The purpose of this article is to review some of the current endeavors in this developing field. To maintain brevity, the focus is on recent studies carried out in our own laboratory and in conjunction with Professor M.T. Bowers at the University of California at Santa Barbara, with emphasis on the use of kinetic energy release distributions and infrared laser multiphoton excitation to probe potential energy surfaces for the reactions of atomic metal ions with alkenes and alkanes. [Pg.16]

DMABN suffers from the fact that dual fluorescence is only observable for polar media. Therefore, the pretwisted ester DMPYRBEE has been developed which shows dual fluorescence also in alkane solvents. 9 This probe allowed measurement of nonpolar polymeric siloxane oils and a comparison with the corresponding measurements using an EXCIMER probe. As expected from the decreased reaction volume necessary for the TICT photoreaction, the latter is usable down to much lower temperatures (higher viscosities) and probes a larger fraction of free volume. 26 ... [Pg.124]

In 1983 Suslick reported the effects of high intensity (ca. 100 W cm, 20 kHz) irradiation of alkanes at 25 °C under argon [47]. These conditions are of course, well beyond those which would be produced in a reaction vessel immersed in an ultrasonic bath and indeed those normally used for sonochemistry with a probe. Under these extreme conditions the primary products were H2, CH4, C2H2 and shorter chain alk-l-enes. These results are not dissimilar from those produced by high temperature (> 1200 °C) alkane pyrolyses. The principal degradation process under ultrasonic irradiation was considered to be C-C bond fission with the production of radicals. By monitoring the decomposition of Fe(CO)5 in different alkanes it was possible to demonstrate the inverse relationship between sonochemical effect (i. e. the energy of cavitational collapse) and solvent vapour pressure [48],... [Pg.88]

The acidity probes discussed above are the most commonly used. However, the use of many different probes has been reported in the literature. This list includes nitriles, alkanes, amines, water, di-hydrogen, deuterium, isotopically labeled molecules, benzene, etc. Probe molecules can also be used to measure basicity on zeohtes. In this case, weakly acidic molecules such as CO2, pyrrole, acetic acid and halogenated light paraffins have been used. Space does not permit discussion of these in any detail, but information about these probes and their applications can be found in the following references [87, 127-130]. [Pg.135]

For propane, n-pentane and n-hexane the differential heats of adsorption over FER dropped more rapidly, right after 1 molecule was adsorbed per Bronsted acid site. Similar results were obtained with TON. In contrast, with MOR and FAU the drop in the differential heats of adsorption for n-alkanes occurred at lower coverages, indicating that only a certain fraction of the Bronsted acid sites were accessible to the adsorbing alkane probe molecules. With MFI the drop did not occur until 2 molecules of n-alkane were adsorbed per Bronsted acid site, suggesting perhaps a higher stoichiometry of about two n-alkanes per Bronsted acid site. In the cases of i-butane and i-pentane the drop occurred around one alkane per Bronsted acid site. Finally, n-butane adsorption isotherms measured over TON framework type catalysts having three different A1 contents (Si/Al2 = 90, 104, 128) showed Henry coefficients to increase with increase in the A1 content [5], Based... [Pg.412]

In view of Freeman s studies on the use of normal alkanes and polystyrenes to probe the macroporosity of porous materials (24), the results presented here would suggest that low molecular weight species ranging from twenty (deuterium oxide) to several thousand daltons may be used to define microporosity of a SBC support. The ease with which this is achieved may allow routine examination of microporosity in new support materials and a more exact definition of total permeation volume in SBC. [Pg.216]


See other pages where Probes alkanes is mentioned: [Pg.135]    [Pg.35]    [Pg.37]    [Pg.67]    [Pg.10]    [Pg.35]    [Pg.408]    [Pg.88]    [Pg.103]    [Pg.105]    [Pg.271]    [Pg.315]    [Pg.361]    [Pg.442]    [Pg.209]    [Pg.81]    [Pg.15]    [Pg.202]    [Pg.126]    [Pg.522]    [Pg.60]    [Pg.254]    [Pg.282]    [Pg.240]    [Pg.391]    [Pg.280]    [Pg.121]    [Pg.214]    [Pg.150]    [Pg.158]    [Pg.403]    [Pg.134]    [Pg.40]    [Pg.456]    [Pg.145]    [Pg.262]   
See also in sourсe #XX -- [ Pg.149 ]




SEARCH



© 2024 chempedia.info