Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermodynamics pressure and

The aim of this chapter was to demonstrate how the application of high-pressure thermodynamic and kinetic techniques can contribute to the elucidation of inorganic and bioinorganic reaction mechanisms. [Pg.51]

Chapter Two deals with the basic concepts of high-pressure thermodynamic and phase equilibrium calculations. Experimental methods and theoretical modelling are described briefly in order to give both a comprehensive view of the problems, and suggestions and references to more detailed treatments. [Pg.666]

Patten, T. D., Some Characteristics of Nucleate Boiling of Water at Sub-atmospheric Pressures. Thermodynamics and Fluid Mech. Convention, Inst, of Mech. Engrs., Cambridge, England, Paper No. 9,1964. [Pg.58]

Vapor-pressure data and other thermodynamic properties. [Pg.11]

A general prerequisite for the existence of a stable interface between two phases is that the free energy of formation of the interface be positive were it negative or zero, fluctuations would lead to complete dispersion of one phase in another. As implied, thermodynamics constitutes an important discipline within the general subject. It is one in which surface area joins the usual extensive quantities of mass and volume and in which surface tension and surface composition join the usual intensive quantities of pressure, temperature, and bulk composition. The thermodynamic functions of free energy, enthalpy and entropy can be defined for an interface as well as for a bulk portion of matter. Chapters II and ni are based on a rich history of thermodynamic studies of the liquid interface. The phase behavior of liquid films enters in Chapter IV, and the electrical potential and charge are added as thermodynamic variables in Chapter V. [Pg.1]

Grzegory I, Jun J, Bockowski M, Krukowski S, Wroblewski M, Lucznik B and Porowski S 1995 lll-V nitrides-thermodynamics and crystal growth at high N2 pressure J. Phys. Chem. Solids 56 639... [Pg.1965]

The connections between simulation and thermodynamics can be carried further. Simulations can be set up to be constant volume, pressure, temperature, and so on. Some of the most sophisticated simulations are those involving multiple phases or phase changes. These techniques are discussed further in Chapter 7. [Pg.15]

Selected physical properties are given in Table 1 and some thermodynamic properties in Table 2. Vapor pressure (P) and enthalpy of vaporization (H) over the temperature range 178.45 to 508.2 K can be calculated with an error of less than 3% from the following equations wherein the units are P, kPa Pi, mj/ mol T, K and = reduced temperature, T/ T (1) ... [Pg.92]

Chemica.1 Properties. With few exceptions, SF is chemically inert at ambient temperature and atmospheric pressure. Thermodynamically SF is unstable and should react with many materials, including water, but these reactions are kineticaHy impeded by the fluorine shielding the sulfur. Sulfur hexafluoride does not react with alkah hydroxides, ammonia, or strong acids. [Pg.241]

During the nineteenth century the growth of thermodynamics and the development of the kinetic theory marked the beginning of an era in which the physical sciences were given a quantitative foundation. In the laboratory, extensive researches were carried out to determine the effects of pressure and temperature on the rates of chemical reactions and to measure the physical properties of matter. Work on the critical properties of carbon dioxide and on the continuity of state by van der Waals provided the stimulus for accurate measurements on the compressibiUty of gases and Hquids at what, in 1885, was a surprisingly high pressure of 300 MPa (- 3,000 atmor 43,500 psi). This pressure was not exceeded until about 1912. [Pg.76]

Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44). Tables 2,3, and 4 outline many of the physical and thermodynamic properties ofpara- and normal hydrogen in the sohd, hquid, and gaseous states, respectively. Extensive tabulations of all the thermodynamic and transport properties hsted in these tables from the triple point to 3000 K and at 0.01—100 MPa (1—14,500 psi) are available (5,39). Additional properties, including accommodation coefficients, thermal diffusivity, virial coefficients, index of refraction, Joule-Thorns on coefficients, Prandti numbers, vapor pressures, infrared absorption, and heat transfer and thermal transpiration parameters are also available (5,40). Thermodynamic properties for hydrogen at 300—20,000 K and 10 Pa to 10.4 MPa (lO " -103 atm) (41) and transport properties at 1,000—30,000 K and 0.1—3.0 MPa (1—30 atm) (42) have been compiled. Enthalpy—entropy tabulations for hydrogen over the range 3—100,000 K and 0.001—101.3 MPa (0.01—1000 atm) have been made (43). Many physical properties for the other isotopes of hydrogen (deuterium and tritium) have also been compiled (44).
L. A. Webber, Thermodynamic and Eelated Properties of Ouygen fromTripk Point to 500 K at Pressures to 1000 Bar, NASA Reference Pubheation 1011, NBSIR 77—865, National Bureau of Standards, Boulder, Colo., 1977. [Pg.483]

The thermodynamic and physical properties of pure steam are well estabUshed over the range of pressures and temperatures used. The chemical properties of steam and of substances ia steam, their molecular stmctures, and iateractions with the soHd surfaces of containments need to be more fliUy explored. [Pg.350]

A tabulation of the partial pressures of sulfuric acid, water, and sulfur trioxide for sulfuric acid solutions can be found in Reference 80 from data reported in Reference 81. Figure 13 is a plot of total vapor pressure for 0—100% H2SO4 vs temperature. References 81 and 82 present thermodynamic modeling studies for vapor-phase chemical equilibrium and liquid-phase enthalpy concentration behavior for the sulfuric acid—water system. Vapor pressure, enthalpy, and dew poiat data are iacluded. An excellent study of vapor—liquid equilibrium data are available (79). [Pg.180]

The physical piopeities of toluene have been well studied expeiimentally. Several physical properties ate presented in Table 1 (1). Thermodynamic and transport properties can also be obtained, from other sources (2—7). The vapor pressure of toluene can be calculated as follows (8), where P is in kPa and T is in K. [Pg.174]

Available data on the thermodynamic and transport properties of carbon dioxide have been reviewed and tables compiled giving specific volume, enthalpy, and entropy values for carbon dioxide at temperatures from 255 K to 1088 K and at pressures from atmospheric to 27,600 kPa (4,000 psia). Diagrams of compressibiHty factor, specific heat at constant pressure, specific heat at constant volume, specific heat ratio, velocity of sound in carbon dioxide, viscosity, and thermal conductivity have also been prepared (5). [Pg.18]

Vapor pressure is the most important of the basic thermodynamic properties affec ting liquids and vapors. The vapor pressure is the pressure exerted by a pure component at equilibrium at any temperature when both liquid and vapor phases exist and thus extends from a minimum at the triple point temperature to a maximum at the critical temperature, the critical pressure. This section briefly reviews methods for both correlating vapor pressure data and for predicting vapor pressure of pure compounds. Except at very high total pressures (above about 10 MPa), there is no effect of total pressure on vapor pressure. If such an effect is present, a correction, the Poynting correction, can be applied. The pressure exerted above a solid-vapor mixture may also be called vapor pressure but is normallv only available as experimental data for common compounds that sublime. [Pg.389]

The concept of equilibrium is central in thermodynamics, for associated with the condition of internal eqmlibrium is the concept of. state. A system has an identifiable, reproducible state when 1 its propei ties, such as temperature T, pressure P, and molar volume are fixed. The concepts oi state a.ndpropeity are again coupled. One can equally well say that the properties of a system are fixed by its state. Although the properties T, P, and V may be detected with measuring instruments, the existence of the primitive thermodynamic properties (see Postulates I and 3 following) is recognized much more indirectly. The number of properties for wdiich values must be specified in order to fix the state of a system depends on the nature of the system and is ultimately determined from experience. [Pg.513]

In this analysis F will be constant but it could be described more accurately as a function of parameters influencing heat transfer in the condenser (temperature, pressure, flow rate, fluid thermodynamical, and thermophysical characteristics. . . ). [Pg.1116]

Hugoniot data have been fitted by the equation = Cq + su + qu, where Uj is the shock velocity and the associated particle velocity. Griineisen parameters have been obtained from best estimates of zero pressure thermodynamic parameters, which are sometimes of dubious value. The pressures and velocities describing the valid range of the fits do not necessarily indicate the onset or completion of a transition. [Pg.382]

This shows that from thermodynamics tlie enthalpy is a function of tlie pressure, temperamre, and mass fraction of the component, namely... [Pg.431]

A gaseous emission has a flowrate of 0.02 kmole/s and contains 0.014 mole fraction of vinyl chloride. The supply temperature of the stream is 338 K. It is desired to recover 80% of the vinyl chloride using a combination of pressurization and cooling. Available for service are two refrigerants NH3 and Nj. Thermodynamic and economic data are provided by problem 10.1 and by Dunn etal. (1995), Design a cost-effective energy-induced separation system. [Pg.260]

Lloyd carried out a range of similar calculations, for differing thermodynamic parameters the results are presented in Fig. 8.12 in comparison with those for a basic STIG cycle with the same parameters of pressure ratio and maximum temperature. There is indeed similarity between the two sets, with the TCR plant having a higher efficiency. It is noteworthy that both cycles obtain high thermal efficiency at quite low pressure ratios as one would expect for what are essentially CBTX recuperative gas turbine cycles. [Pg.150]


See other pages where Thermodynamics pressure and is mentioned: [Pg.371]    [Pg.58]    [Pg.58]    [Pg.35]    [Pg.334]    [Pg.371]    [Pg.58]    [Pg.58]    [Pg.35]    [Pg.334]    [Pg.252]    [Pg.353]    [Pg.94]    [Pg.496]    [Pg.120]    [Pg.418]    [Pg.47]    [Pg.401]    [Pg.335]    [Pg.224]    [Pg.248]    [Pg.248]    [Pg.271]    [Pg.655]    [Pg.1545]    [Pg.438]    [Pg.49]    [Pg.354]    [Pg.364]    [Pg.50]    [Pg.777]    [Pg.560]   
See also in sourсe #XX -- [ Pg.89 , Pg.90 , Pg.91 ]




SEARCH



Thermodynamic pressure

Thermodynamics, pressure

© 2024 chempedia.info