Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preconcentration solvent extraction

Actually, the successful use of cationic surfactants (cSurf), as flotation reagents, frothers, metal corrosion inhibitors, pharmaceutical products, cosmetic materials, stimulates considerable increase in their production and as a result increases their content in natural water. As cationic surfactants are toxic pollutants in natural water and their maximum contaminant level (MCL) of natural water is 0.15-4.0 mg/dm, it is necessary to use methods for which provide rapid and reliable determination with sensitivity equal to at least 0.1 of MCL. Practically most sensitive methods of cationic surfactant determination include the preconcentration by extraction or sorption. Analytical methods without using organic solvents are more preferable due to their ecological safety. [Pg.316]

Solvent extraction is defined as the process of separating one constituent from a mixture by dissolving it into a solvent in which it is soluble but in which the other constituents of the mixture are not, or are at least less soluble. The three main reasons for using solvent extraction are (i) to isolate a component or analyte of interest (ii) to remove potential interferents from a matrix and (iii) to preconcentrate an analyte prior to measurement. [Pg.60]

The best method or the most suitable combination of methods can be discussed only in regard to the actual analytical problem. The ideal method for polymer analysis in an industrial environment is often essentially that practical one which identifies and quantitates the desired components at the lowest acceptable total cost for the customer, compatible with the desired accuracy and time constraints. Three examples may illustrate the necessary pragmatic trade-off. Despite being old methods, classical polymer/additive analysis techniques, based on initial additive separation from the polymer matrix through solvent extraction methods followed by preconcentration, still enjoy great popularity. This... [Pg.744]

Determination of trace metals in seawater represents one of the most challenging tasks in chemical analysis because the parts per billion (ppb) or sub-ppb levels of analyte are very susceptible to matrix interference from alkali or alkaline-earth metals and their associated counterions. For instance, the alkali metals tend to affect the atomisation and the ionisation equilibrium process in atomic spectroscopy, and the associated counterions such as the chloride ions might be preferentially adsorbed onto the electrode surface to give some undesirable electrochemical side reactions in voltammetric analysis. Thus, most current methods for seawater analysis employ some kind of analyte preconcentration along with matrix rejection techniques. These preconcentration techniques include coprecipitation, solvent extraction, column adsorption, electrodeposition, and Donnan dialysis. [Pg.128]

Use of immobilised chelating agents for sequestering trace metals from aqueous and saline media presents several significant advantages over chelation-solvent extraction approaches to this problem [193,194], With little sample manipulation, large preconcentration factors can generally be realised in relatively short times with low analytical blanks. [Pg.160]

The concentration of nickel in natural waters is so low that one or two enrichment steps are necessary before instrumental analysis. The most common method is graphite furnace atomic absorption after preconcentration by solvent extraction [122] or coprecipitation [518]. Even though this technique has been used successfully for the nickel analyses of seawater [519,520] it is vulnerable to contamination as a consequence of the several manipulation steps and of the many reagents used during preconcentration. [Pg.207]

Owing to inadequate detection limits by direct analysis, various workers examined preconcentration procedures, including dithiocarbamate preconcentration [447,732-734], ion exchange preconcentration [735-737], chelation solvent extraction [736], coprecipitation [738], and preconcentration in silica-immobilised 8-hydroxyquinoline [129]. [Pg.258]

Preconcentration by the ring-oven technique [227] and by solvent extraction have both been used in order to improve the sensitivity of X-ray fluorescence... [Pg.278]

A variety of preconcentration procedures has been used, including solvent extraction of metal chelates, coprecipitation, chelating ion exchange, adsorption onto other solids such as silica-bonded organic complexing agents, and liquid-liquid extraction. [Pg.303]

A logical approach which serves to minimise such uncertainties is the use of a number of distinctly different analytical methods for the determination of each analyte wherein none of the methods would be expected to suffer identical interferences. In this manner, any correspondence observed between the results of different methods implies that a reliable estimate of the true value for the analyte concentration in the sample has been obtained. To this end Sturgeon et al. [21] carried out the analysis of coastal seawater for the above elements using isotope dilution spark source mass spectrometry. GFA-AS, and ICP-ES following trace metal separation-preconcentration (using ion exchange and chelation-solvent extraction), and direct analysis by GFA-AS. These workers discuss analytical advantages inherent in such an approach. [Pg.335]

Kingston et al. [32] preconcentrated the eight transition elements cadmium, cobalt, copper, iron, manganese, nickel, lead, and zinc from estuarine and seawater using solvent extraction/chelation and determined them at sub ng/1 levels by GFA-AS. [Pg.337]

The major anions and cations in seawater have a significant influence on most analytical protocols used to determine trace metals at low concentrations, so production of reference materials in seawater is absolutely essential. The major ions interfere strongly with metal analysis using graphite furnace atomic absorption spectroscopy (GFAAS) and inductively coupled plasma mass spectroscopy (ICP-MS) and must be eliminated. Consequently, preconcentration techniques used to lower detection limits must also exclude these elements. Techniques based on solvent extraction of hydrophobic chelates and column preconcentration using Chelex 100 achieve these objectives and have been widely used with GFAAS. [Pg.50]

Analytical methods for detecting phenol in environmental samples are summarized in Table 6-2. The accuracy and sensitivity of phenol determination in environmental samples depends on sample preconcentration and pretreatment and the analytical method employed. The recovery of phenol from air and water by the various preconcentration methods is usually low for samples containing low levels of phenol. The two preconcentration methods commonly used for phenols in water are adsorption on XAD resin and adsorption on carbon. Both can give low recoveries, as shown by Van Rossum and Webb (1978). Solvent extraction at acidic pH with subsequent solvent concentration also gives unsatisfactory recovery for phenol. Even during carefully controlled conditions, phenol losses of up to 60% may occur during solvent evaporation (Handson and Hanrahan 1983). The in situ acetylation with subsequent solvent extraction as developed by Sithole et al. (1986) is probably one of the most promising methods. [Pg.188]

Solvent extraction has also played a major role in sample pre- or posttreatment to improve selectivity and sensitivity. Initially simple schemes of liquid-liquid extraction were used as separation methods for the cleanup and preconcentration of samples, mainly because of its simplicity. [Pg.559]

Solvent extraction is a very widely used and simple preconcentration technique. After the sample is extracted with a suitable solvent (such as methylene chloride), the extract is concentrated by evaporation and subjected to analysis. One important requirement is extremely clean solvents fortunately these are now commercially available. Because of the evaporation step, solvent extraction cannot be used for the analysis of very volatile compounds. Depending on sample size, sensitivities of 0.1 ppb can easily be achieved. [Pg.63]

Extraction can be nsed for separation or isolation of the analyte from the sample matrix or vice versa as well as a preconcentration method. Extraction of metal ions is based on the reaction of weak organic acids with metal ions that give nncharged complexes that are highly solnble in organic solvents as ethers, hydrocarbons, ketones and polychlorinated species (generally chloroform and carbon tetrachloride). The efficacy of the extraction is mainly dependent on the extent to which solntes distribnte themselves between two immiscible solvents. The amonnts of analyte can be determined spectrophotometrically as well as with other available analytical methods. [Pg.529]

Where the analyte is present in sufficient concentration, it may be determined directly. Otherwise it may need to be concentrated by evaporation before determination. Methods of concentration include evaporation, solvent extraction and preconcentration using ion exchange or chelating resins. [Pg.13]

S. Ch. Nielsen, S. Sturup, H. Spliid and E. H. Hansen, Selective flow injection analysis of ultra-trace amounts of Cr(VI), preconcentration of it by solvent extraction and determination by electrothermal atomic absorption spectrometry (ETAAS), Talanta, 49(5), 1999, 1027-1044. [Pg.156]

Analytical separation of several organics from water by PVC polymer is feasible. A solvent extraction model describes the separation dynamics and pH dependence. Selectivity via pH control of the extraction step and preconcentration of analyte can be accomplished. These results suggest that other polymer solvent extraction schemes can be developed by using this approach. The flow-through amperometric technique provides a well-suited detector component for the technique. [Pg.352]

Relative error values for the elements ranged from zero to a high of 18% with most values being 5% or less. The 18% relative error was obtained for indium and is attributable to the low concentration of this element in the solution analyzed. Moreover, the indium values were obtained on the lower end of the working curve where the sensitivity is greatly reduced. Standard deviations and coefficients of variation for the elements of interest are at acceptable levels (less than 1% standard deviation and around 5% coefficient of variation) for this technique. Again it should be pointed out that the original purpose of the subject method was to develop a rapid routine analysis for the major and minor constituents in coal ash and related materials without the necessity of several preconcentration steps, solvent extraction techniques, or pH adjustments. [Pg.69]

Horwitz, E.P., Schultz, W.W. 1999. Solvent extraction in the treatment of acidic high-level liquid waste Where do we stand In Metal Ion Separation and Preconcentration Progress and Opportunities. Bond, A.H., Dietz, M.L., Rogers, R.D. Eds. ACS Symposium Series 716, American Chemical Society, Washington, DC, pp. 20-50. [Pg.38]


See other pages where Preconcentration solvent extraction is mentioned: [Pg.13]    [Pg.61]    [Pg.60]    [Pg.60]    [Pg.182]    [Pg.140]    [Pg.259]    [Pg.305]    [Pg.336]    [Pg.431]    [Pg.15]    [Pg.23]    [Pg.469]    [Pg.563]    [Pg.564]    [Pg.566]    [Pg.569]    [Pg.569]    [Pg.570]    [Pg.574]    [Pg.578]    [Pg.175]    [Pg.35]    [Pg.378]    [Pg.247]    [Pg.419]    [Pg.300]   
See also in sourсe #XX -- [ Pg.205 ]




SEARCH



Preconcentration

Preconcentration preconcentrator

Preconcentrator

© 2024 chempedia.info