Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential refinements

The tool extends the original GRAMM fast Fourier transformation methodology by employing smoothed potentials, refinement stage, and knowledge-based scoring... [Pg.445]

If the cellulose chain is assumed to have the same backbone conformation as in the ethylenediamine complex, then the structure is defined by nine potentially refinable parameters. The approximate chain orientation was refined first before the ethyl-enedlamlnes were added. Thereafter C-N sections were attached by hydrogen bonds at two of the three hydroxyls (l.e. 1,3-diamino-... [Pg.209]

Choice of the Vector and Scalar Potentials Refinement of the Hamiltonian Effective NMR Hamiltonian (( ))... [Pg.720]

Soper AK (2001) Tests of the empirical potential refinement method and a new method of application to neutron diffraction data on water. Mol Phys 99(17) 1503-1516... [Pg.46]

Chromatographic techniques, particularly gas phase chromatography, are used throughout all areas of the petroleum industry research centers, quality control laboratories and refining units. The applications covered are very diverse and include gas composition, search and analysis of contaminants, monitoring production units, feed and product analysis. We will show but a few examples in this section to give the reader an idea of the potential, and limits, of chromatographic techniques. [Pg.70]

The potential advantages of LPG concern essentially the environmental aspects. LPG s are simple mixtures of 3- and 4-carbon-atom hydrocarbons with few contaminants (very low sulfur content). LPG s contain no noxious additives such as lead and their exhaust emissions have little or no toxicity because aromatics are absent. This type of fuel also benefits often enough from a lower taxation. In spite of that, the use of LPG motor fuel remains static in France, if not on a slightly downward trend. There are several reasons for this situation little interest from automobile manufacturers, reluctance on the part of automobile customers, competition in the refining industry for other uses of and fractions, (alkylation, etherification, direct addition into the gasoline pool). However, in 1993 this subject seems to have received more interest (Hublin et al., 1993). [Pg.230]

A detailed study of the properties of the potential products is of prime technical and economic importance, because it allows the refiner to have a choice in selecting feedstocks for his different units for separation, transformation and conversion, to set their operating conditions, in order to satisfy the needs of the marketplace in the best ways possible. [Pg.315]

Among several important developments, the potential function has been refined and one commonly used function takes the form [54]... [Pg.267]

It is usually not efficient to use the methods described above to refine the transition state to full accuracy. Starting from a qualitatively correct region on the potential surface, in particular one where the Hessian has the right signature, efficient gradient optimization teclmiques, with minor modifications, are usually able to zero in on the transition state quickly. [Pg.2351]

The occurrence of predissociation opens up a new family of observable quantities. It is possible to measure not only linewidths or lifetimes, but also the internal state distributions of the fragments. All these quantities are sensitive to the intennolecular potential and can be used to test or refine proposed potential surfaces. [Pg.2446]

While simulations reach into larger time spans, the inaccuracies of force fields become more apparent on the one hand properties based on free energies, which were never used for parametrization, are computed more accurately and discrepancies show up on the other hand longer simulations, particularly of proteins, show more subtle discrepancies that only appear after nanoseconds. Thus force fields are under constant revision as far as their parameters are concerned, and this process will continue. Unfortunately the form of the potentials is hardly considered and the refinement leads to an increasing number of distinct atom types with a proliferating number of parameters and a severe detoriation of transferability. The increased use of quantum mechanics to derive potentials will not really improve this situation ab initio quantum mechanics is not reliable enough on the level of kT, and on-the-fly use of quantum methods to derive forces, as in the Car-Parrinello method, is not likely to be applicable to very large systems in the foreseeable future. [Pg.8]

The first point to remark is that methods that are to be incorporated in MD, and thus require frequent updates, must be both accurate and efficient. It is likely that only semi-empirical and density functional (DFT) methods are suitable for embedding. Semi-empirical methods include MO (molecular orbital) [90] and valence-bond methods [89], both being dependent on suitable parametrizations that can be validated by high-level ab initio QM. The quality of DFT has improved recently by refinements of the exchange density functional to such an extent that its accuracy rivals that of the best ab initio calculations [91]. DFT is quite suitable for embedding into a classical environment [92]. Therefore DFT is expected to have the best potential for future incorporation in embedded QM/MD. [Pg.15]

A particularly important application of molecular dynamics, often in conjunction with the simulated annealing method, is in the refinement of X-ray and NMR data to determine the three-dimensional structures of large biological molecules such as proteins. The aim of such refinement is to determine the conformation (or conformations) that best explain the experimental data. A modified form of molecular dynamics called restrained moleculai dynarrdcs is usually used in which additional terms, called penalty functions, are added tc the potential energy function. These extra terms have the effect of penalising conformations... [Pg.499]

The additional penalty function that is added to the empirical potential energy function in restrained dynamics X-ray refinement has the form ... [Pg.501]

The pyrometaHurgical processes, ie, furnace-kettle refining, are based on (/) the higher oxidation potentials of the impurities such as antimony, arsenic, and tin, ia comparison to that of lead and (2) the formation of iasoluble iatermetaUic compounds by reaction of metallic reagents such as 2iac with the impurities, gold, silver and copper, and calcium and magnesium with bismuth (Fig. 12). [Pg.43]

Electrorefining. Electrolytic refining is a purification process in which an impure metal anode is dissolved electrochemicaHy in a solution of a salt of the metal to be refined, and then recovered as a pure cathodic deposit. Electrorefining is a more efficient purification process than other chemical methods because of its selectivity. In particular, for metals such as copper, silver, gold, and lead, which exhibit Htfle irreversibHity, the operating electrode potential is close to the reversible potential, and a sharp separation can be accompHshed, both at the anode where more noble metals do not dissolve and at the cathode where more active metals do not deposit. [Pg.175]

Nickel. Most nickel is also refined by electrolysis. Both copper and nickel dissolve at the potential required for anodic dissolution. To prevent plating of the dissolved copper at the cathode, a diaphragm cell is used, and the anolyte is circulated through a purification circuit before entering the cathodic compartment (see Nickel and nickel alloys). [Pg.176]

Sodium nitrate is also used in formulations of heat-transfer salts for he at-treatment baths for alloys and metals, mbber vulcanization, and petrochemical industries. A mixture of sodium nitrate and potassium nitrate is used to capture solar energy (qv) to transform it into electrical energy. The potential of sodium nitrate in the field of solar salts depends on the commercial development of this process. Other uses of sodium nitrate include water (qv) treatment, ice melting, adhesives (qv), cleaning compounds, pyrotechnics, curing bacons and meats (see Food additives), organics nitration, certain types of pharmaceutical production, refining of some alloys, recovery of lead, and production of uranium. [Pg.197]


See other pages where Potential refinements is mentioned: [Pg.26]    [Pg.350]    [Pg.188]    [Pg.2428]    [Pg.666]    [Pg.403]    [Pg.26]    [Pg.350]    [Pg.188]    [Pg.2428]    [Pg.666]    [Pg.403]    [Pg.2349]    [Pg.2789]    [Pg.2832]    [Pg.511]    [Pg.600]    [Pg.351]    [Pg.247]    [Pg.326]    [Pg.596]    [Pg.663]    [Pg.130]    [Pg.57]    [Pg.38]    [Pg.131]    [Pg.160]    [Pg.130]    [Pg.184]    [Pg.378]    [Pg.15]    [Pg.77]    [Pg.256]    [Pg.563]    [Pg.1]    [Pg.240]    [Pg.537]   


SEARCH



Empirical Potential Structure Refinement

Empirical potential structure refinement EPSR)

Empirical potential structure refinement models

How to Obtain Refined Potential Surfaces for the Solvent Molecules

Potential energy function refinement

© 2024 chempedia.info