Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pore size treatment

We therefore felt it timely to attempt a critical exposition and assessment of the common methods for the evaluation of the surface area and pore size distribution of solids from adsorption measurements. Our main concern has therefore been with the use of adsorption data for these purposes rather than with adsorption per se and it is for this reason that our treatment of theoretical matters, whilst sufficiently detailed to bring out the nature of the assumptions underlying the various methods, is not exhaustive we have not set out to write a text-book or a treatise on adsorption, and our choice of material from the literature has been dictated solely by its seeming suitability for the explanation or illustration of the topic under discussion. [Pg.293]

In order to maintain a definite contact area, soHd supports for the solvent membrane can be introduced (85). Those typically consist of hydrophobic polymeric films having pore sizes between 0.02 and 1 p.m. Figure 9c illustrates a hoUow fiber membrane where the feed solution flows around the fiber, the solvent—extractant phase is supported on the fiber wall, and the strip solution flows within the fiber. Supported membranes can also be used in conventional extraction where the supported phase is continuously fed and removed. This technique is known as dispersion-free solvent extraction (86,87). The level of research interest in membrane extraction is reflected by the fact that the 1990 International Solvent Extraction Conference (20) featured over 50 papers on this area, mainly as appHed to metals extraction. Pilot-scale studies of treatment of metal waste streams by Hquid membrane extraction have been reported (88). The developments in membrane technology have been reviewed (89). Despite the research interest and potential, membranes have yet to be appHed at an industrial production scale (90). [Pg.70]

Soaking a siUca gel in dilute ammonium hydroxide solution at 50—85°C can result in significant coarsening of the gel texture (5). Aging and thermal treatments result in a one-way process, ie, loss of specific surface area and in increase in pore size. The pore size can also be enlarged by dissolution of some of the siUca. Treating a siUca gel with O.S-N KOH or dilute HF can enlarge the pores from 0.7 to 3.7 nm (3). [Pg.253]

The individual membrane filtration processes are defined chiefly by pore size although there is some overlap. The smallest membrane pore size is used in reverse osmosis (0.0005—0.002 microns), followed by nanofiltration (0.001—0.01 microns), ultrafHtration (0.002—0.1 microns), and microfiltration (0.1—1.0 microns). Electro dialysis uses electric current to transport ionic species across a membrane. Micro- and ultrafHtration rely on pore size for material separation, reverse osmosis on pore size and diffusion, and electro dialysis on diffusion. Separation efficiency does not reach 100% for any of these membrane processes. For example, when used to desalinate—soften water for industrial processes, the concentrated salt stream (reject) from reverse osmosis can be 20% of the total flow. These concentrated, yet stiH dilute streams, may require additional treatment or special disposal methods. [Pg.163]

The advantage of sol-gel technology is the ability to produce a highly pure y-alumina and zirconia membrane at medium temperatures, about 700 °C, with a uniform pore size distribution in a thin film. However, the membrane is sensitive to heat treatment, resulting in cracking on the film layer. A successful crack-free product was produced, but it needed special care and time for suitable heat curing. Only y-alumina membrane have the disadvantage of poor chemical and thermal stability. [Pg.387]

However, it should be said in passing that the pore size and surface area of the silica, which can be critical for certain LC applications, is controlled by the conditions of gelling, the subsequent washing conditions and any ensuing thermal treatment. [Pg.57]

I acknowledge that no guarantee has been given me as to the condition of the complexion or size of the skin pores following treatment. [Pg.46]

Porous membranes have been prepared by leaching an additive from films and tubes of PCL (64,72). The procedure involves extrusion or casting blends of PCL and Pluronic F68, the latter being an FDA-approved oxyethylene-co-oxypropylene triblock copolymer. Treatment of the phase-separated blend with aqueous acetone or aqueous alcohols causes both swelling of the polymer and extraction of the Pluronic F68. The induced pore size and void volume may be controlled by the time, temperature, and solvent composition. [Pg.88]

The preparation was performed on a commercial microcrystalline beta zeolite. The zeolite was treated with the Fenton s reagent and less than 0.3 wt% of carbon remained after the treatment. The porosity was fully developed as revealed by the pore-size distribution. Elemental analysis combined with TPR did confirm the high degree of Fe-exchange (98%) on the Bronsted sites. [Pg.131]

Figure 6.4 Features of beta zeolite after Fenton treatment, (a) Saito-Foley adsorption pore-size distribution from Ar-physisorption for (O) parent zeolite containing the template (no porosity) ( ) Fenton-detemplated and (V) commercial NH4-form BEA. Figure 6.4 Features of beta zeolite after Fenton treatment, (a) Saito-Foley adsorption pore-size distribution from Ar-physisorption for (O) parent zeolite containing the template (no porosity) ( ) Fenton-detemplated and (V) commercial NH4-form BEA.
High porosity carbons ranging from typically microporous solids of narrow pore size distribution to materials with over 30% of mesopore contribution were produced by the treatment of various polymeric-type (coal) and carbonaceous (mesophase, semi-cokes, commercial active carbon) precursors with an excess of KOH. The effects related to parent material nature, KOH/precursor ratio and reaction temperature and time on the porosity characteristics and surface chemistry is described. The results are discussed in terms of suitability of produced carbons as an electrode material in electric double-layer capacitors. [Pg.86]


See other pages where Pore size treatment is mentioned: [Pg.153]    [Pg.207]    [Pg.67]    [Pg.73]    [Pg.253]    [Pg.410]    [Pg.313]    [Pg.355]    [Pg.476]    [Pg.234]    [Pg.379]    [Pg.114]    [Pg.110]    [Pg.116]    [Pg.38]    [Pg.167]    [Pg.238]    [Pg.283]    [Pg.50]    [Pg.98]    [Pg.266]    [Pg.461]    [Pg.406]    [Pg.425]    [Pg.95]    [Pg.517]    [Pg.626]    [Pg.213]    [Pg.333]    [Pg.270]    [Pg.38]    [Pg.167]    [Pg.313]    [Pg.725]    [Pg.47]    [Pg.68]   
See also in sourсe #XX -- [ Pg.208 , Pg.211 ]




SEARCH



Pore size

© 2024 chempedia.info