Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethanes advantages

Electrical Properties. CeUular polymers have two important electrical appHcations (22). One takes advantage of the combination of inherent toughness and moisture resistance of polymers along with the decreased dielectric constant and dissipation factor of the foamed state to use ceUular polymers as electrical-wire insulation (97). The other combines the low dissipation factor and the rigidity of plastic foams in the constmction of radar domes. Polyurethane foams have been used as high voltage electrical insulation (213). [Pg.415]

In the second quarter of the twentieth century, with the development of poly(vinyl chloride), nylon, polyurethane, and other polymers, many new and improved leather-like materials, so-called coated fabrics (qv), were placed on the market. Shortages of leather after World War 11 led to the expansion of these leather-like materials ("man-made" leathers) to replace leather in shoes, clothing, bags, upholstery, and other items. DurabiUty and waterproof quahties superior to leather made coated fabrics advantageous, in spite of imperfection in breathabihty and flexibiUty. Demands for shoes, clothing, and other items are stiU increasing due to growing world population and urbanization. [Pg.88]

Thermosetting-encapsulation compounds, based on epoxy resins (qv) or, in some niche appHcations, organosiHcon polymers, are widely used to encase electronic devices. Polyurethanes, polyimides, and polyesters are used to encase modules and hybrids intended for use under low temperature, low humidity conditions. Modified polyimides have the advantages of thermal and moisture stabiHty, low coefficients of thermal expansion, and high material purity. Thermoplastics are rarely used for PEMs, because they are low in purity, requHe unacceptably high temperature and pressure processing conditions. [Pg.530]

Sihcones (qv) have an advantage over organic resias ia their superior thermal stabiUty and low dielectric constants. Polyurethanes, when cured, are tough and possess outstanding abrasion and thermal shock resistance. They also have favorable electrical properties and good adhesion to most surfaces. However, polyurethanes are extremely sensitive to and can degrade after prolonged contact with moisture as a result, they are not as commonly used as epoxies and sihcones (see Urethane polymers). [Pg.531]

Polyurethanes as Biomaterials. Much of the progress in cardiovascular devices can be attributed to advances in preparing biostable polyurethanes. Biostable polycarbonate-based polyurethane materials such as Corethane (9) and ChronoFlex (10) offer far-reaching capabiUties to cardiovascular products. These and other polyurethane materials offer significant advantages for important long-term products, such as implantable ports, hemodialysis, and peripheral catheters pacemaker interfaces and leads and vascular grafts. [Pg.184]

There is persisting interest in nylon-RIM materials as alternatives to polyurethane-RIM. Advantages of the nylon materials are the better shelf life and lower viscosity of the reaction components, ability to mould thick-walled articles, absence of a need for mould lubrication and the ability to avoid using isocyanates with their associated hazards. The main disadvantages of nylon-RIM are the need to have heated storage tanks and elevated temperature reactions, difficulties in catalyst handling and the high water absorption of the product. Possible markets include exterior car body components and appliance and business machine components. [Pg.504]

Recently, many synthetic polymers such as urea/formalin resin, melamine/formalin resin, polyester, and polyurethane have been widely used as the wall material for the microcapsule, though the gelatin microcapsule is still used. Microcapsules using a synthetic polymer wall have several advantages over those using a gelatin wall (1) the preparation process is simple, (2) the size of the microcapsules is well balanced, (3) the microcapsule concentration can be increased twofold or more and (4) the microcapsules have a high resistance to water and many chemicals. Synthetic microcapsules are prepared by interfacial polymerization or in situ polymerization. [Pg.199]

The morphology of polyurethanes varies widely depending on the molecular characteristics of their components. We take advantage of this variability by selecting components that give us the properties that we desire for specific applications. In general, the lower the fraction of isocyanate residues in a polyurethane, the closer its morphology and properties will match... [Pg.392]

When a thermoplastic polyurethane elastomer is heated above the melting point of its hard blocks, the chains can flow and the polymer can be molded to a new shape. When the polymer cools, new hard blocks form, recreating the physical crosslinks. We take advantage of these properties to mold elastomeric items that do not need to be cured like conventional rubbers. Scrap moldings, sprues, etc. can be recycled directly back to the extruder, which increases the efficiency of this process. In contrast, chemically crosslinked elastomers, which are thermosetting polymers, cannot be reprocessed after they have been cured. [Pg.394]

Multiblock copolymers are synthesized by step polymerization using prepolymers containing specific end-groups (Eq. 14). Polyester- and polyether-polyurethanes and polyether-polyesters are multiblock copolymers of commercial interest. Step polymerizations has advantages over living polymerization. There is a... [Pg.30]

In this contribution, we report equilibrium modulus and sol fraction measurements on diepoxidet-monoepoxide-diamine networks and polyoxypropylene triol-diisocyanate networks and a comparison with calculated values. A practically zero (epoxides) or low (polyurethanes) Mooney-Rivlin constant C and a low and accounted for wastage of bonds in elastically inactive cycles are the advantages of the systems. Plots of reduced modulus against the gel fraction have been used, because they have been found to minimize the effect of EIC, incompleteness of the reaction, or possible errors in analytical characteristics (16-20). A full account of the work on epoxy and polyurethane networks including the statistical derivation of various structural parameters will be published separately elsewhere. [Pg.404]

During the past year, several new studies have been published on -D-glucosidase IME systems that attempt to fulfill these process-relevant criteria. Immobilization of -D-glucosidase by attachment to polyurethane foam (40) has shown some promise as an economical IME system due to the support s resistance to enzymatic and microbial degradation, advantageous physical properties, and improved kinetics. However, the potential for fouling by particulate matter exhibited by foams renders these supports... [Pg.139]


See other pages where Polyurethanes advantages is mentioned: [Pg.814]    [Pg.814]    [Pg.6]    [Pg.348]    [Pg.531]    [Pg.102]    [Pg.476]    [Pg.298]    [Pg.341]    [Pg.341]    [Pg.137]    [Pg.64]    [Pg.19]    [Pg.20]    [Pg.1830]    [Pg.802]    [Pg.256]    [Pg.208]    [Pg.220]    [Pg.149]    [Pg.281]    [Pg.565]    [Pg.410]    [Pg.908]    [Pg.316]    [Pg.581]    [Pg.582]    [Pg.386]    [Pg.70]    [Pg.209]    [Pg.127]    [Pg.24]    [Pg.638]    [Pg.540]    [Pg.80]    [Pg.565]    [Pg.75]    [Pg.294]   
See also in sourсe #XX -- [ Pg.5 ]




SEARCH



Advantages of Polyurethanes

Polyurethane foam, advantages

© 2024 chempedia.info