Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polysulfone plastic

Polysulfone Plastics. These plastics which were commercialized by Union Carbide are actually aromatic polyethers containing periodic sulfone groups which provide additional resonance stabilization. They have good mechanical properties, creep resistance, and dimensional stability but their outstanding quality is their high heat distortion temperature (345°F.) and resistance to thermal oxidative degradation. Limitations are difficult thermoplastic processability, amber color, and sensitivity to organic solvents. [Pg.23]

Bisphenol A is also used in the manufacture of the high-temperature resistant polysulfone plastic, Udel (Union Carbide), which is produced by the reaction of the di-potassium salt of bisphenol A with 4,4 -dichlorodiphenyl sulfone. [Pg.161]

Bisphenol A. One mole of acetone condenses with two moles of phenol to form bisphenol A [80-05-07] which is used mainly in the production of polycarbonate and epoxy resins. Polycarbonates (qv) are high strength plastics used widely in automotive appHcations and appHances, multilayer containers, and housing appHcations. Epoxy resins (qv) are used in fiber-reinforced larninates, for encapsulating electronic components, and in advanced composites for aircraft—aerospace and automotive appHcations. Bisphenol A is also used for the production of corrosion- and chemical-resistant polyester resins, polysulfone resins, polyetherimide resins, and polyarylate resins. [Pg.99]

Acrylic ESTER POLYMERS Acrylonitrile POLYMERS Cellulose esters). Engineering plastics (qv) such as acetal resins (qv), polyamides (qv), polycarbonate (qv), polyesters (qv), and poly(phenylene sulfide), and advanced materials such as Hquid crystal polymers, polysulfone, and polyetheretherketone are used in high performance appHcations they are processed at higher temperatures than their commodity counterparts (see Polymers containing sulfur). [Pg.136]

The aromatic sulfone polymers are a group of high performance plastics, many of which have relatively closely related stmctures and similar properties (see Polymers containing sulfur, polysulfones). Chemically, all are polyethersulfones, ie, they have both aryl ether (ArOAr) and aryl sulfone (ArS02Ar) linkages in the polymer backbone. The simplest polyethersulfone (5) consists of aromatic rings linked alternately by ether and sulfone groups. [Pg.331]

Resins for advanced composites can be classified according to their chemistry typical resins are polyaryletherketones, polysulfides, polysulfones, and a very broad class of polyimides containing one or more additional functional groups (Table 2) (see also Engineering plastics). [Pg.37]

Although inhibitors are deliberately added to the silicone formulation to control cure rate, unwanted cure inhibition can be caused by other species that react to form strong complexes with the platinum catalyst. Most notable of these undesired inhibitors include organotin and other organometallic compounds, sulfur, polysulfides, polysulfones or other sulfur-containing materials, amines, urethanes or amine-containing materials, unsaturated hydrocarbons in plasticizers, and some solder flux residues. [Pg.687]

ABS has a specific gravity of 1.03 to 1.06 and a tensile strength in the range of 6 to 7.5 X 10 psi. These polymers are tough plastics with outstanding mechanical properties. A wide variety of ABS modifications are available with heat resistance comparable to or better than polysulfones and polycarbonates (noted later in this section). Another outstanding property of ABS is its ability to be alloyed with other thermoplastics for improved properties. For example, ABS is alloyed with rigid PVC for a product with better flame resistance. [Pg.336]

Polysulfone It is a high performance amorphous plastic that is tough, highly heat resistant, strong and stiff. Products are transparent and slightly clouded amber in color. Material exhibits notch sensitivity and is attacked by ketones, esters, and aromatic hydrocarbons. Other similar types in this group include polyethersulfone, polyphenyl-sulfone, and polyarylsulfone. Use includes medical equipment, solar-heating applications and other performance applications where flame retardance, autoclavability and transparency are needed. [Pg.429]

Odor and taste Polystyrene, styrene-acrylonitrile, polyethylene, acrylic, ABS, polysulfone, EVA, polyphenylene oxide, and many other TPs are examples of satisfactorily odor-free. FDA approvals are available for many of these plastics. Food packaging and refrigerating conditions will also eliminate certain plastics. There are TPs and melamine as well as urea compounds that are suitable for this service. [Pg.431]

Between 250 and 450°F (121 and 232°C), plastics used include glass or mineral-filled phenolics, melamines, alkyds, silicones, nylons, polyphenylene oxides, polysulfones, polycarbonates, methylpentenes, fluorocarbons, polypropylenes, and diallyl phthalates. The addition of glass fillers to the thermoplastics can raise the useful temperature range as much as 100°F and at the same time shortens the molding cycle. [Pg.431]

Flame resistance The underwriters ruling on the use of self-extinguishing plastics for contact-carrying members and many other components introduces critical material selection problems. All TSs are basically self-extinguishing. Nylon, polyphenylene oxide, polysulfone, polycarbonate, vinyl, chlorinated polyether, chlorotrifluoroethy-lene, vinylidene fluoride, and fluorocarbon are examples of TPs that may be suitable for applications requiring self-extinguishing properties. Cellulose acetate and ABS are also available with these properties. Glass reinforcement improves these materials considerably. [Pg.431]

Moisture Deteriorating effects of moisture are well known as reviewed early in this chapter (OTHER BEHAVIOR, Drying Plastic). Examples for high moisture applications include polyphenylene oxide, polysulfone, acrylic, butyrate, diallyl phthalate, glass-bonded mica, mineral-filled phenolic, chlorotrifluoroethylene, vinylidene, chlorinated polyether chloride, vinylidene fluoride, and fluorocarbon. Diallyl phthalate, polysulfone, and polyphenylene oxide have performed well with moisture/steam on one side and air on the other (a troublesome... [Pg.432]

Dimensional stability There is plastics with very good dimensional stability, and they are suitable where some age and environmental dimensional changes are permissible. These materials include polyphenylene oxide, polysulfone, phenoxy, mineral-filled phenolic, diallyl phthalate, epoxy, rigid vinyl, styrene, and various RPs. Such products will gain from an after-bake for dimensional stabilization. Glass fillers will improve the dimensional stability of all plastics. [Pg.433]

Many of the commercially important plastics such as polystyrene, polyamide, polyester, polycarbonate, polysulfone, polyphenylene oxide alloys, epoxy, and phenolics lack good impact... [Pg.329]

In the first stage in order to test the process of various types of polymer films were surface-fluorinated. From 1990 to 1994 it was shown that XeF2 could be used effectively for surface fluorination of a variety of plastics. Polyethylene film and plates,18 aromatic polysulfone,19 polyvinyltrimethylsilane,20 and polycarbonate,21 among other polymeric materials, were fluorinated successfully. [Pg.232]

Polysulfones are engineering plastics used only for specialized and technical applications. The main applications for polysulfones are ... [Pg.536]

The resistance to moisture and hot water is good, with no hydrolysis, and the polysulfones can withstand multiple steam sterilizations. However, a certain absorption of water does occur involving a plasticization with improvement of the impact resistance. [Pg.541]

Water vapour polysulfone has a medium permeability, evaluated at 4 for a full range of 0.05 up to 400 for all tested plastics. [Pg.544]

In 1966, Cadotte developed a method for casting mlcroporous support film from polysulfone, polycarbonate, and polyphenylene oxide plastics ( ). Of these, polysulfone (Union Carbide Corporation, Udel P-3500) proved to have the best combination of compaction resistance and surface microporosity. Use of the mlcroporous sheet as a support for ultrathin cellulose acetate membranes produced fluxes of 10 to 15 gfd, an increase of about five-fold over that of the original mlcroporous asymmetric cellulose acetate support. Since that time, mlcroporous polysulfone has been widely adopted as the material of choice for the support film in composite membranes, while finding use itself in many ultrafiltration processes. [Pg.306]

Over 30 commercial formulations have been surveyed in depth. Compressive strength measurements permit the exclusion of materials obviously prone to fail under pressure. FTIR (MX-1, Nicolet Instrument Corp.) analysis has identified formulations with volatile diluents capable of chemically modifying the composite membrane. Through the use of FTIR it was possible with an otherwise successful formulation to identify the presence of butyl glycidyl ether (BGE) as a diluent. Subsequently experimentation showed that vapor of BGE is capable of plasticizing porous polysulfone with a drop in both flux and rejection of the membrane. Collaboration with the supplier resulted in substitution of a nonvolatile glycidyl ether diluent to avoid the problem. [Pg.379]

A number of plastics are condensation polymers and include polyesters and nylons that are not as highly oriented as the same materials but in fiber form. Other plastics have been developed that have outstanding heat stability, strength, and other properties that allow their wide use. These plastics include polycarbonates, polyimides, polybenzimidazoles, polysulfides, polyethers, polysulfones, and polyketones. [Pg.131]

The presence of aromatic groups in polymers greatly reduces their radiation sensitivity. Aromatic polysulfones are commercially important engineering plastics with high temperature resistance and also show good radiation resistance (16). Development of polymers with improved radiation resistance should be possible by copolymerization of other aromatic structures into the chain. [Pg.146]


See other pages where Polysulfone plastic is mentioned: [Pg.431]    [Pg.549]    [Pg.431]    [Pg.549]    [Pg.139]    [Pg.378]    [Pg.381]    [Pg.463]    [Pg.465]    [Pg.465]    [Pg.467]    [Pg.469]    [Pg.295]    [Pg.555]    [Pg.7]    [Pg.489]    [Pg.277]    [Pg.518]    [Pg.432]    [Pg.241]    [Pg.288]    [Pg.296]    [Pg.621]    [Pg.684]    [Pg.150]    [Pg.528]   
See also in sourсe #XX -- [ Pg.15 , Pg.103 ]

See also in sourсe #XX -- [ Pg.161 ]




SEARCH



Polysulfones

© 2024 chempedia.info