Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polypeptides maturation

The complex series of events in collagen maturation provide a model that illustrates the biologic consequences of incomplete polypeptide maturation. The best-known defect in collagen biosynthesis is scurvy, a result of a dietary deficiency of vitamin C required by... [Pg.38]

Human TNF-a is initially synthesized as a 233 amino acid polypeptide that is anchored in the plasma membrane by a single membrane-spanning sequence. This TNF pro-peptide, which itself displays biological activity, is usually proteolytically processed by a specific extracellular metallo-protease. Proteolytic cleavage occurs between residues 76 (Ala) and 77 (Val), yielding the mature (soluble) 157 amino acid TNF-a polypeptide. Mature human TNF-a appears to be devoid of a carbohydrate component, and contains a single disulfide bond. [Pg.255]

For example, a polypeptide is synthesized as a linear polymer derived from the 20 natural amino acids by translation of a nucleotide sequence present in a messenger RNA (mRNA). The mature protein exists as a weU-defined three-dimensional stmcture. The information necessary to specify the final (tertiary) stmcture of the protein is present in the molecule itself, in the form of the specific sequence of amino acids that form the protein (57). This information is used in the form of myriad noncovalent interactions (such as those in Table 1) that first form relatively simple local stmctural motifs (helix... [Pg.199]

The differences in the amino acid chemistry of the hide coUagen and the hair keratin are the basis of the lime-sulfide unhairing system. Hair contains the amino acid cystine. This sulfur-containing amino acid cross-links the polypeptide chains of mature hair proteins. In modem production of bovine leathers the quantity of sulfide, as Na2S or NaSH, is normally 2—4% based on the weight of the hides. The lime is essentially an unhmited supply of alkah buffered to pH 12—12.5. The sulfide breaks the polypeptide S—S cross-links by reduction. Unhairing without sulfide may take several days or weeks. The keratin can be easily hydrolyzed once there is a breakdown in the hair fiber stmcture and the hair can be removed mechanically. The coUagen hydrolysis is not affected by the presence of the sulfides (1—4,7). [Pg.83]

The maturation of proteins into their final structural state often involves the cleavage or formation (or both) of covalent bonds, a process termed posttranslational modification. Many polypeptides are initially synthesized as larger precursors, called proproteins. The extra polypeptide segments in these proproteins often serve as leader sequences that target a polypeptide... [Pg.37]

Mature human albumin consists of one polypeptide chain of 585 amino acids and contains 17 disulfide bonds. By the use of proteases, albumin can be subdivided into three domains, which have different functions. Albumin has an ellipsoidal shape, which means that it does not increase the viscosity of the plasma as much as an elongated molecule such as fibrinogen does. Because of its relatively low molecular mass (about 69 kDa) and high concentration, albumin is thought to be responsible for 75-80% of the osmotic pressure of human plasma. Electrophoretic smdies have shown that the plasma of certain humans lacks albumin. These subjects are said to exhibit analbuminemia. One cause of this condition is a mutation that affects spUcing. Subjects with analbuminemia show only moderate edema, despite the fact that albumin is the major determinant of plasma osmotic pressure. It is thought that the amounts of the other plasma proteins increase and compensate for the lack of albumin. [Pg.584]

Ratio imaging is particularly suited for single-polypeptide FRET sensors. In these constructs FRET changes are due to altered distance and/or orientation of the donor and acceptor, and since the fluorophores are tethered their stoichiometry is always fixed. Thus, the filterFRET problems are easier to address and, assuming full maturation of both FPs [4], it can in fact be shown that under these circumstances two images suffice to calculate FRET quantitatively (see Textbox 1 and Appendix 7.A.6). [Pg.307]

IL-la and -ip are expressed as large (30 kDa) precursor molecules from which the mature polypeptide is released by proteolytic cleavage. Neither IL-la and -lp possess any known secretory signal peptide, and the molecular mechanism by which they exit the cell remains to be characterized. Neither interleukin appears to be glycosylated. [Pg.251]

Insulin was first identified as an anti-diabetic factor in 1921, and was introduced clinically the following year. Its complete amino acid sequence was determined in 1951. Although mature insulin is a dimeric structure, it is synthesized as a single polypeptide precursor, i.e. preproinsulin. This 108 amino acid polypeptide contains a 23 amino acid signal sequence at its amino terminal end. This guides it through the endoplasmic reticulum membrane, where the signal sequence is removed by a specific peptidase. [Pg.293]

Mature insulin consists of two polypeptide chains connected by two interchain disulfide linkages. The A-chain contains 21 amino acids, whereas the larger B-chain is composed of 30 residues. Insulins from various species conform to this basic structure, while varying slightly in their amino acid sequence. Porcine insulin (5777 Da) varies from the human form (5807 Da) by a single amino acid, whereas bovine insulin (5733 Da) differs by three residues. [Pg.293]

Glucagon is a single-chain polypeptide of 29 amino acid residues and a molecular mass of 3500 Da. It is synthesized by the A-cells of the islets of Langerhans, and also by related cells found in the digestive tract. Like insulin, it is synthesized as a high molecular mass from which the mature hormone is releases by selective proteolysis. [Pg.305]


See other pages where Polypeptides maturation is mentioned: [Pg.552]    [Pg.552]    [Pg.539]    [Pg.63]    [Pg.84]    [Pg.285]    [Pg.297]    [Pg.464]    [Pg.554]    [Pg.181]    [Pg.30]    [Pg.30]    [Pg.38]    [Pg.38]    [Pg.358]    [Pg.537]    [Pg.537]    [Pg.294]    [Pg.247]    [Pg.251]    [Pg.280]    [Pg.403]    [Pg.111]    [Pg.1255]    [Pg.6]    [Pg.13]    [Pg.353]    [Pg.133]    [Pg.162]    [Pg.149]    [Pg.427]    [Pg.56]    [Pg.119]    [Pg.233]    [Pg.21]    [Pg.44]    [Pg.63]    [Pg.214]    [Pg.313]    [Pg.317]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



© 2024 chempedia.info