Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers, synthetic, adsorption

The most commonly used emulsifiers are sodium, potassium, or ammonium salts of oleic acid, stearic acid, or rosin acids, or disproportionate rosin acids, either singly or in mixture. An aLkylsulfate or aLkylarenesulfonate can also be used or be present as a stabilizer. A useful stabilizer of this class is the condensation product of formaldehyde with the sodium salt of P-naphthalenesulfonic acid. AH these primary emulsifiers and stabilizers are anionic and on adsorption they confer a negative charge to the polymer particles. Latices stabilized with cationic or nonionic surfactants have been developed for special apphcations. Despite the high concentration of emulsifiers in most synthetic latices, only a small proportion is present in the aqueous phase nearly all of it is adsorbed on the polymer particles. [Pg.254]

New areas in adsorption technology include carbonaceous and polymeric resins (3). Based on synthetic organic polymer materials, these resins may find special uses where compound selectivity is important, low effluent concentrations are required, carbon regeneration is impractical, or the waste to be treated contains high levels of inorganic dissolved soHds. [Pg.161]

In the physical separation process, a molecular sieve adsorbent is used as in the Union Carbide Olefins Siv process (88—90). Linear butenes are selectively adsorbed, and the isobutylene effluent is distilled to obtain a polymer-grade product. The adsorbent is a synthetic 2eohte, Type 5A in the calcium cation exchanged form (91). UOP also offers an adsorption process, the Sorbutene process (92). The UOP process utilizes ahquid B—B stream, and uses a proprietary rotary valve containing multiple ports, which direct the flow of Hquid to various sections of the adsorber (93,94). The cis- and trans-isomers are alkylated and used in the gasoline blending pool. [Pg.369]

Porous silica packings do, however, sometimes suffer from adsorption between the sample and silanol groups on the silica surface. This interaction can interfere with the size exclusion experiment and yield erroneous information. In many cases, this problem is easily overcome by selecting mobile phases that eliminate these interactions. In addition, the surface of porous silica packings is routinely modified in order to reduce these undesirable interactions. Trimeth-ylsilane modified packing is typically used with synthetic polymers. Diol modified packing is typically used with proteins and peptides. [Pg.76]

TSK-GEL PW type columns are commonly used for the separation of synthetic water-soluble polymers because they exhibit a much larger separation range, better linearity of calibration curves, and much lower adsorption effects than TSK-GEL SW columns (10). While TSK-GEL SW columns are suitable for separating monodisperse biopolymers, such as proteins, TSK-GEL PW columns are recommended for separating polydisperse compounds, such as polysaccharides and synthetic polymers. [Pg.106]

Synthetic polymers TSK-GEL GMPWxi TSK-GEL GSOOOPWxl G3000PWxl Large pore size, low adsorption, linear calibration curve... [Pg.132]

Synthetic, nonionic polymers generally elute with little or no adsorption on TSK-PW columns. Characterization of these polymers has been demonstrated successfully using four types of on-line detectors. These include differential refractive index (DRI), differential viscometry (DV), FALLS, and MALLS detection (4-8). Absolute molecular weight, root mean square (RMS) radius of gyration, conformational coefficients, and intrinsic viscosity distributions have... [Pg.562]

Adsorption beds of activated carbon for the purification of citric acid, and adsorption of organic chemicals by charcoal or porous polymers, are good examples of ion-exchange adsorption systems. Synthetic resins such as styrene, divinylbenzene, acrylamide polymers activated carbon are porous media with total surface area of 450-1800 m2-g h There are a few well-known adsorption systems such as isothermal adsorption systems. The best known adsorption model is Langmuir isotherm adsorption. [Pg.185]

At the symposium on which this book is based, the various authors presented papers on the general topic of polymer adsorption and particle stabilization/destabilization. In this volume both aqueous and nonaqueous systems are included, comprising work on both natural and synthetic polymers. Together the chapters constitute a comprehensive update of research in progress on these topics and provide broad coverage of both experimental and theoretical aspects. [Pg.4]

Enzymes can be immobilized by matrix entrapment, by microencapsulation, by physical or ionic adsorption, by covalent binding to organic or inorganic polymer-carriers, or by whole cell immobilization (5 ). Particularly impressive is the great number of chemical reactions developed for the covalent binding of enzymes to inorganic carriers such as glass, to natural polymers such as cellulose or Sepharose, and to synthetic polymers such as nylon, polyacrylamide, and other vinyl polymers and... [Pg.203]

Equation (88) is the expression used commonly for solutions of synthetic polymers, but, where the nature of adsorption and binding is of critical interest, alternative forms exist. These differ mainly in the modes of expressing concentration (e.g. activity, molality, molarity, mass/unit volume). Interrelations among the units and expressions have been presented very clearly by Timasheff and Townend15. ... [Pg.203]

Ishikawa, T. Inouye, K. (1983) The selective adsorption of NO on synthetic iron(III) oxide hydroxides. Progr. Colloid Polymer Sd. 68 152-157... [Pg.591]

The most widely studied synthetic polymers for blood contact applications are polyether urethane ureas ( Biomer (Ethicon)). These materials have been used in artificial hearts, as coatings for lead wires in pacemakers, have been used and are being considered for blood vessel prostheses. The success of these materials is believed to be due to preferential adsorption of albumin rather than globulin or fibrinogen which promote a clotting response. However, these materials are hydrophobic and questions of long-term effectiveness are unresolved. Particularly, these materials may shed emboli or may be susceptible to surface calcification. Thus, it may be desirable to have synthetic polymers which are hydrophilic and better resemble blood vessels [475]. [Pg.40]


See other pages where Polymers, synthetic, adsorption is mentioned: [Pg.153]    [Pg.362]    [Pg.406]    [Pg.654]    [Pg.551]    [Pg.162]    [Pg.397]    [Pg.530]    [Pg.381]    [Pg.437]    [Pg.2064]    [Pg.136]    [Pg.133]    [Pg.147]    [Pg.213]    [Pg.211]    [Pg.327]    [Pg.376]    [Pg.268]    [Pg.190]    [Pg.936]    [Pg.39]    [Pg.335]    [Pg.159]    [Pg.282]    [Pg.174]    [Pg.370]    [Pg.12]    [Pg.60]    [Pg.401]    [Pg.114]    [Pg.2]    [Pg.247]    [Pg.3]    [Pg.30]    [Pg.117]   
See also in sourсe #XX -- [ Pg.141 ]




SEARCH



Polymer Synthetic polymers

Polymer adsorption

Synthetic polymers

© 2024 chempedia.info