Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers electrochemical activation

The optimization of the biorecognition layer by the modification of a transducer used. Nanostmctured poly aniline composite comprising Prussian Blue or poly-ionic polymers has been synthesized and successfully used in the assembly of cholinesterase sensors. In comparison with non-modified sensors, this improved signal selectivity toward electrochemically active species and decreased the detection limits of Chloropyrifos-Methyl and Methyl-Pai athion down to 10 and 3 ppb, respectively. [Pg.295]

Polypyrrole, poly thiophene, polyfuran, polycarbazole, polystyrene with tetrathi-afulvalene substituents, polyethylene with carbazole substituents, and poly-oxyphenazine as electrochemically active polymers for rechargeable batteries 97CRV207. [Pg.218]

Petr N, Klaus M, Santhanam KSV, Otto H (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97 207-282... [Pg.346]

Nitration of the surface of polypyrrole and the subsequent reduction of the nitrate groups has been reported [244] and Bidan et al. [306, 307] have investigated the electrochemistry of a number of polymers based on pyrroles with /V-substituents which are themselves electrochemically active. Polypyrrole has also been successfully deposited onto polymeric films of ruthenium complexes [387], and has been used as an electrode for the deposition and stripping of mercury [388], As with most conducting polymers, several papers have also appeared on the use of polypyrrole in battery systems (e.g. [327, 389] and Ref. therein). [Pg.50]

Some theoretical prerequisites for application of modified and expanded graphites, Si- and Sn-based composites and alloys, electroconducting polymers as active materials, catalysts and electro-conductive additives for lithium - ion batteries, metal-air batteries and electrochemical capacitors are considered. The models and the main concepts of battery-related use for such materials are proposed. [Pg.311]

Apart from electron promoters a large number of electron mediators have long been investigated to make redox enzymes electrochemically active on the electrode surface. In the line of this research electron mediators such as ferrocene and its derivatives have successfully been incorporated into an enzyme sensor for glucose [3]. The mediator was easily accessible to both glucose oxidase and an electron tunnelling pathway could be formed within the enzyme molecule [4]. The present authors [5,6] and Lowe and Foulds [7] used a conducting polymer as a molecular wire to connect a redox enzyme molecule to the electrode surface. [Pg.339]

These differences in film morphology were also reflected as differences in film formation conditions, film adhesion, and in electrochemical properties. The pyrazoline beads readily formed films from solvents such as benzene. For the phenoxy TTF system, however, only CH2Cl2 was effective in forming films. In general, the TTF cross-linked polymers were found to be less adherent to the metallized substrates than the pyrazoline cross-linked polymers. Electro-chemically, it was found that the pyrazoline films showed complete activity after one potential sweep. The TTF polymer films, on the other hand, required from 5 to 20 cycles to reach full electrochemical activity as evidenced by a constant voltammogram with cycling. Furthermore, it was observed that the TTF polymer films were much less electroactive than the pyrazoline materials as shown by optical densities and total coulombs passed which were several times less for the TTF systems. [Pg.446]

In recent several years, super-capacitors are attracting more and more attention because of their high capacitance and potential applications in electronic devices. The performance of super-capacitors with MWCNTs deposited with conducting polymers as active materials is greatly enhanced compared to electric double-layer super-capacitors with CNTs due to the Faraday effect of the conducting polymer as shown in Fig. 9.18 (Valter et al., 2002). Besides those mentioned above, polymer/ CNT nanocomposites own many potential applications (Breuer and Sundararaj, 2004) in electrochemical actuation, wave absorption, electronic packaging, selfregulating heater, and PTC resistors, etc. The conductivity results for polymer/CNT composites are summarized in Table 9.1 (Biercuk et al., 2002). [Pg.199]

It usually takes place close to the melting temperature of the polymer when the pores collapse turning the porous ionically conductive polymer film into a nonporous insulating layer between the electrodes. At this temperature there is a significant increase in cell impedance and passage of current through the cell is restricted. This prevents further electrochemical activity in the cell, thereby shutting the cell down before an explosion can occur. [Pg.195]

The recognition that self-limited arylamine-based polymers could be electrochemically activated in aqueous acids has led to a new class of 3-D hybrid... [Pg.248]

Polymeric ion-radicals are usually formed as a result of one-electron redox modifications of uncharged polymers containing electrochemically active groups. They attract an enhanced attention in the sense of possible practical applications. Because polymeric ion-radicals contain many spin-bearing groups, a similarity emerges between polymeric ion-radicals and poly(ion-radicals). [Pg.48]

The anode layer of polymer electrolyte membrane fuel cells typically includes a catalyst and a binder, often a dispersion of poly(tetraflu-oroethylene) or other hydrophobic polymers, and may also include a filler, e.g., acetylene black carbon. Anode layers may also contain a mixture of a catalyst, ionomer and binder. The presence of a ionomer in the catalyst layer effectively increases the electrochemically active surface area of the catalyst, which requires a ionically conductive pathway to the cathode catalyst to generate electric current (16). [Pg.145]

A wide range of dendrimers with functional core is described in the literature. Thus chromophores [7], electrochemically active, redox active [8], and catalyti-cally active [9] or also self-associating and chiral units as well as polymerisable monomers and polymers have been successfully introduced into the centre of dendrimers. However, the core unit not only has a determining effect on the function, but also has a decisive influence on the multiplicity, size, and shape of the dendrimer. [Pg.51]

The PPy-films doped with (1) were characterized by cyclic voltammetry (Figure 6) and UV/VIS-spectroscopy (Figure 7). The immobilized polymer-bound flavin moieties showed very good electrochemical activity with El4= -0.496 V (vs SCE), which is a little more negative than values (-0.45 V) found in the literature for free flavins (34). If we compare the UV/VIS-spectra (on ITO-electrodes, Figure 7) of... [Pg.174]

For each monomer and ionic liquid, measurement of the total cathodic charge passed during reduction of the polymers in the final post-polymerization CVs, compared to the peak polymer oxidation currents from the final growth cycles, allows comparison of the film electrochemical activities while taking into account the relative amounts of the polymer. The former value is often used as an indication of the amount of polymer grown, but this assumes that the electrochemical activities of the films are identical. [Pg.184]


See other pages where Polymers electrochemical activation is mentioned: [Pg.1687]    [Pg.28]    [Pg.242]    [Pg.213]    [Pg.466]    [Pg.221]    [Pg.370]    [Pg.530]    [Pg.561]    [Pg.123]    [Pg.352]    [Pg.107]    [Pg.444]    [Pg.3]    [Pg.200]    [Pg.217]    [Pg.6]    [Pg.237]    [Pg.317]    [Pg.487]    [Pg.245]    [Pg.325]    [Pg.938]    [Pg.80]    [Pg.83]    [Pg.169]    [Pg.178]    [Pg.412]    [Pg.133]    [Pg.196]    [Pg.298]    [Pg.179]    [Pg.180]    [Pg.185]   
See also in sourсe #XX -- [ Pg.153 ]




SEARCH



Active polymers

Classification of Electrochemically Active Polymers

Electrically active polymers electrochemical cells

Electrochemical activity

Electrochemical doping, electrically active polymers

Electrochemically activated

Electrochemically active

Electrochemically active polymers

Electrochemically active polymers

Electrochemically active polymers classes

Polymer activities

Polymers activator

Polymers, activation

© 2024 chempedia.info