Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization, solvents for

Polymerization Solvent. Sulfolane can be used alone or in combination with a cosolvent as a polymerization solvent for polyureas, polysulfones, polysUoxanes, polyether polyols, polybenzimidazoles, polyphenylene ethers, poly(l,4-benzamide) (poly(imino-l,4-phenylenecarbonyl)), sUylated poly(amides), poly(arylene ether ketones), polythioamides, and poly(vinylnaphthalene/fumaronitrile) initiated by laser (134—144). Advantages of using sulfolane as a polymerization solvent include increased polymerization rate, ease of polymer purification, better solubilizing characteristics, and improved thermal stabUity. The increased polymerization rate has been attributed not only to an increase in the reaction temperature because of the higher boiling point of sulfolane, but also to a decrease in the activation energy of polymerization as a result of the contribution from the sulfonic group of the solvent. [Pg.70]

UCAR Ester EEP as a Polymerization Solvent for an Acrylic Resin... [Pg.845]

The first work on acetylene polymerization in a liquid crystal medium was done in the mid-1980s [50-56]. The liquid crystal polymerization method was used for the preparation of highly aligned PA films directly through the anisotropic reaction field produced by macroscopically oriented nematic liquid crystals used as a polymerization solvent for the Ziegler-Natta catalyst. [Pg.304]

Sulfolane is used as a polymerization solvent for the production of polysulfones, polysiloxanes, polyphenylene ethers, and other polymers. Sulfolane is said to increase the reaction rates, afford easier polymer purification, and improved thermal stability. Sulfolane is a solvent for dissolving a variety of polymers for use in the fiber-spinning process. Cellulose and cellulose ester polymers can be plasticized with sulfolane to give improved flexibility and other physical property improvements [12,13]. Other application areas that have used sulfolane include electronic and electrical, textile-dye uses, curing of polysulfide sealant, and as a catalyst in certain synthetic reactions. [Pg.287]

In addition, the catalyst system is rmiquely adaptable to Dow s solution polymerization process which operates at a relatively high polymerization temperature (110-160°C) in order that the polymer product remains completely soluble in the polymerization solvent. For a catalyst based on the complex (CjMe lSiMe Nlt-BulTiClj/MAO operating at an ethylene partial pressure of 450 psi with 1-octene as a comonomer and a 10 minute polymerization time, relatively high molecular weight polyethylene is obtained, which is necessary for a commercial catalyst system. Figure 4.21 illustrates this molecular weight/polymerization temperature data. [Pg.203]

A method has been developed recently to eliminate the thermal process for producing polyacetylene films. This technique is a liquid-crystal polymerization method, which allows oriented films to be prepared directly through an anisotropic reaction field (68-70). The field is produced by macroscopically orientated nematic liquid crystals, which are used as the polymerization solvent for a Ziegler-Natta catalyst. This technique yields highly oriented films in the trans configuration. This process produces polyacetylene with good conductivity (10 s/cm) without the need for thermal treatment and stretching, which causes defects and breaks fibrils in films. [Pg.369]

The copolymerization of methyl 4-(phenylthio)phenyl sulfoxide with poly(TFE-co-PVE) was carried out in a mixture of freon-113/ trifluoromethanesulfonic acid as the polymerization solvent for 10 hr (Scheme 1). The solvent viscosity increased at the end stage of the polymerization. The resulting polymer was washed with freon-113 and acetonitrile repeatedly to remove the unreacted poly(TFE-co-PVE) and homopolymer of polysulfonium(i9). The block copolymer was isolated with 93 % yield. It is believed that the degree of the PPS segment is estimated to be ca. 20 as an average through the completely reaction, which depends on the feed concentration ratio of the monomers( 40). [Pg.385]

The best solvent for this type of polymerization is dimethylformamide. The molecular weight is between 5300 and 5800, and the products have melting points up to 350°C. [Pg.397]

Chain transfer to initiator or monomer cannot always be ignored. It may be possible, however, to evaluate the transfer constants to these substances by investigating a polymerization without added solvent or in the presence of a solvent for which Cgj is known to be negligibly small. In this case the transfer constants Cjj and Cj determined from experiments in which (via... [Pg.392]

Tetrahydrofurfuryl alcohol is used in elastomer production. As a solvent for the polymerization initiator, it finds appHcation in the manufacture of chlorohydrin mbber. Additionally, tetrahydrofurfuryl alcohol is used as a catalyst solvent-activator and reactive diluent in epoxy formulations for a variety of apphcations. Where exceptional moisture resistance is needed, as for outdoor appHcations, furfuryl alcohol is used jointly with tetrahydrofurfuryl alcohol in epoxy adhesive formulations. [Pg.83]

Acrylonitrile (AN), C H N, first became an important polymeric building block in the 1940s. Although it had been discovered in 1893 (1), its unique properties were not realized until the development of nitrile mbbers during World War II (see Elastomers, synthetic, nitrile rubber) and the discovery of solvents for the homopolymer with resultant fiber appHcations (see Fibers, acrylic) for textiles and carbon fibers. As a comonomer, acrylonitrile (qv) contributes hardness, rigidity, solvent and light resistance, gas impermeabiUty, and the abiUty to orient. These properties have led to many copolymer apphcation developments since 1950. [Pg.191]

Chain transfer is an important consideration in solution polymerizations. Chain transfer to solvent may reduce the rate of polymerization as well as the molecular weight of the polymer. Other chain-transfer reactions may iatroduce dye sites, branching, chromophoric groups, and stmctural defects which reduce thermal stabiUty. Many of the solvents used for acrylonitrile polymerization are very active in chain transfer. DMAC and DME have chain-transfer constants of 4.95-5.1 x lO " and 2.7-2.8 x lO " respectively, very high when compared to a value of only 0.05 x lO " for acrylonitrile itself DMSO (0.1-0.8 X lO " ) and aqueous zinc chloride (0.006 x lO " ), in contrast, have relatively low transfer constants hence, the relative desirabiUty of these two solvents over the former. DME, however, is used by several acryhc fiber producers as a solvent for solution polymerization. [Pg.277]

Aqueous media, such as emulsion, suspension, and dispersion polymerization, are by far the most widely used in the acryUc fiber industry. Water acts as a convenient heat-transfer and cooling medium and the polymer is easily recovered by filtration or centrifugation. Fiber producers that use aqueous solutions of thiocyanate or zinc chloride as the solvent for the polymer have an additional benefit. In such cases the reaction medium can be converted directiy to dope to save the costs of polymer recovery. Aqueous emulsions are less common. This type of process is used primarily for modacryUc compositions, such as Dynel. Even in such processes the emulsifier is used at very low levels, giving a polymerization medium with characteristics of both a suspension and a tme emulsion. [Pg.279]

Aromatic radical anions, such as lithium naphthalene or sodium naphthalene, are efficient difunctional initiators (eqs. 6,7) (3,20,64). However, the necessity of using polar solvents for their formation and use limits their utility for diene polymerization, since the unique abiUty of lithium to provide high 1,4-polydiene microstmcture is lost in polar media (1,33,34,57,63,64). Consequentiy, a significant research challenge has been to discover a hydrocarbon-soluble dilithium initiator which would initiate the polymerization of styrene and diene monomers to form monomodal a, CO-dianionic polymers at rates which are faster or comparable to the rates of polymerization, ie, to form narrow molecular weight distribution polymers (61,65,66). [Pg.239]

DMSO is an effective solvent for the polymerization as it affords good solubiUty for both the polymer and disodium bisphenol A [2444-90-8]. Typical polymerization temperatures for polysulfone are in the range 130—160°C. At temperatures below 130°C, the polymerization slows down considerably due to poor solubiUty of the disodium bisphenol A salt. [Pg.461]

NMP are examples of suitable solvents for PES and PPSF polymerizations. Chlorobenzene or toluene are used as cosolvents at low concentrations. These cosolvents form an azeotrope with water as they distill out of the reaction mixture, thereby keeping the polymerization medium dehydrated. Potassium carbonate is a suitable choice for base. The synthesis of PES and PPSE differ from the PSE case in that the reaction is carried out in a single-step process. In other words, the formation of the dipotassium salt of the bisphenol is not completed in a separate first step. Equations 2 and 3 represent polymerizations based on the dipotassium salts of bisphenol S and biphenol to make PES and PPSE, respectively. [Pg.462]

Monofunctional, cyclohexylamine is used as a polyamide polymerization chain terminator to control polymer molecular weight. 3,3,5-Trimethylcyclohexylamines ate usehil fuel additives, corrosion inhibitors, and biocides (50). Dicyclohexylamine has direct uses as a solvent for cephalosporin antibiotic production, as a corrosion inhibitor, and as a fuel oil additive, in addition to serving as an organic intermediate. Cycloahphatic tertiary amines are used as urethane catalysts (72). Dimethylcyclohexylarnine (DMCHA) is marketed by Air Products as POLYCAT 8 for pour-in-place rigid insulating foam. Methyldicyclohexylamine is POLYCAT 12 used for flexible slabstock and molded foam. DM CHA is also sold as a fuel oil additive, which acts as an antioxidant. StericaHy hindered secondary cycloahphatic amines, specifically dicyclohexylamine, effectively catalyze polycarbonate polymerization (73). [Pg.212]

Solution polymerization can use various solvents, primarily aUphatic and aromatic hydrocarbons. The choice of solvent is usually dictated by cost, avaHabihty, solvency, toxicity, flammabiUty, and polymer stmcture. SSBR polymerization depends on recovery and reuse of the solvent for economical operation as well as operation under the air-quaUty perrnitting of the local, state, and federal mandates involved. [Pg.494]

Polymerization and Spinning Solvent. Dimethyl sulfoxide is used as a solvent for the polymerization of acrylonitrile and other vinyl monomers, eg, methyl methacrylate and styrene (82,83). The low incidence of transfer from the growing chain to DMSO leads to high molecular weights. Copolymerization reactions of acrylonitrile with other vinyl monomers are also mn in DMSO. Monomer mixtures of acrylonitrile, styrene, vinyUdene chloride, methallylsulfonic acid, styrenesulfonic acid, etc, are polymerized in DMSO—water (84). In some cases, the fibers are spun from the reaction solutions into DMSO—water baths. [Pg.112]

Dimethyl sulfoxide can also be used as a reaction solvent for other polymerizations. Ethylene oxide is rapidly and completely polymerized in DMSO (85). Diisocyanates and polyols or polyamines dissolve and react in DMSO to form solutions of polyurethanes (86) (see Solvents, industrial). [Pg.112]

Solution Polymerization. In solution polymerization, a solvent for the monomer is often used to obtain very uniform copolymers. Polymerization rates ate normally slower than those for suspension or emulsion PVC. Eor example, vinyl chloride, vinyl acetate, and sometimes maleic acid are polymerized in a solvent where the resulting polymer is insoluble in the solvent. This makes a uniform copolymer, free of suspending agents, that is used in solution coatings (99). [Pg.502]

Carbon tetrachloride [56-23-5] (tetrachloromethane), CCl, at ordinary temperature and pressure is a heavy, colorless Hquid with a characteristic nonirritant odor it is nonflammable. Carbon tetrachloride contains 92 wt % chlorine. When in contact with a flame or very hot surface, the vapor decomposes to give toxic products, such as phosgene. It is the most toxic of the chloromethanes and the most unstable upon thermal oxidation. The commercial product frequendy contains added stabilizers. Carbon tetrachloride is miscible with many common organic Hquids and is a powerhil solvent for asphalt, benzyl resin (polymerized benzyl chloride), bitumens, chlorinated mbber, ethylceUulose, fats, gums, rosin, and waxes. [Pg.529]

Commercially, anionic polymerization is limited to three monomers styrene, butadiene, and isoprene [78-79-5], therefore only two useful A—B—A block copolymers, S—B—S and S—I—S, can be produced direcdy. In both cases, the elastomer segments contain double bonds which are reactive and limit the stabhity of the product. To improve stabhity, the polybutadiene mid-segment can be polymerized as a random mixture of two stmctural forms, the 1,4 and 1,2 isomers, by addition of an inert polar material to the polymerization solvent ethers and amines have been suggested for this purpose (46). Upon hydrogenation, these isomers give a copolymer of ethylene and butylene. [Pg.15]

The refined grade s fastest growing use is as a commercial extraction solvent and reaction medium. Other uses are as a solvent for radical-free copolymerization of maleic anhydride and an alkyl vinyl ether, and as a solvent for the polymerization of butadiene and isoprene usiag lithium alkyls as catalyst. Other laboratory appHcations include use as a solvent for Grignard reagents, and also for phase-transfer catalysts. [Pg.429]


See other pages where Polymerization, solvents for is mentioned: [Pg.324]    [Pg.48]    [Pg.264]    [Pg.300]    [Pg.2382]    [Pg.4696]    [Pg.401]    [Pg.479]    [Pg.122]    [Pg.110]    [Pg.324]    [Pg.48]    [Pg.264]    [Pg.300]    [Pg.2382]    [Pg.4696]    [Pg.401]    [Pg.479]    [Pg.122]    [Pg.110]    [Pg.628]    [Pg.280]    [Pg.66]    [Pg.298]    [Pg.240]    [Pg.360]    [Pg.420]    [Pg.444]    [Pg.517]    [Pg.227]    [Pg.45]    [Pg.334]    [Pg.490]    [Pg.49]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Polymeric solvents

Polymerizing solvent

Solvents polymerization

© 2024 chempedia.info