Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization reactions - examples

Homogeneous, free radical/cationic polymerization Amorphous fluoropolymers [Pg.1451]

Precipitation, free radical polymerization Vinyl polymer, semicrystalline fluoropolymers [Pg.1451]

Dispersion, free radical polymerization Polyvinyl acetate and ethylene vinyl acetate copolymer [Pg.1451]

Homogeneous/precipitation, cationic polymerization Vinyl ether polymer [Pg.1451]

Transition metal catalyzed, ring opening methathesis polymerization Norbomene polymer, polycarbonate [Pg.1451]


A polyfunctional monomer can react with more than two other molecules to form the corresponding number of new valence bonds during the polymerization reaction. Examples are divinyl benzene,... [Pg.8]

Organometallic molecules have been used as photoinitiators in cationic, anionic, and radical (chain) polymerization reactions. Examples of each type abound, but only selected examples will be discussed here because the fundamental principle is the same in each case irradiation is used to generate an intermediate species (an ion or a radical species) that can initiate a polymerization reaction. [Pg.257]

Polymerization reactions. There are two broad types of polymerization reactions, those which involve a termination step and those which do not. An example that involves a termination step is free-radical polymerization of an alkene molecule. The polymerization requires a free radical from an initiator compound such as a peroxide. The initiator breaks down to form a free radical (e.g., CH3 or OH), which attaches to a molecule of alkene and in so doing generates another free radical. Consider the polymerization of vinyl chloride from a free-radical initiator R. An initiation step first occurs ... [Pg.21]

The synthesis of five-, six-, and seven-membered cyclic esters or timides uses intramolecular condensations under the same reaction condifions as described for intermolecular reactions. Yields are generally excellent. An example from the colchicine synthesis of E.E. van Ta-melen (1961) is given below. The synthesis of macrocyclic lactones (macrolides) and lactams (n > 8), however, which are of considerable biochemical and pharmacological interest, poses additional problems because of competing intermolecular polymerization reactions (see p. 246ff.). Inconveniently high dilution, which would be necessary to circumvent this side-... [Pg.145]

One of the most sensitive tests of the dependence of chemical reactivity on the size of the reacting molecules is the comparison of the rates of reaction for compounds which are members of a homologous series with different chain lengths. Studies by Flory and others on the rates of esterification and saponification of esters were the first investigations conducted to clarify the dependence of reactivity on molecular size. The rate constants for these reactions are observed to converge quite rapidly to a constant value which is independent of molecular size, after an initial dependence on molecular size for small molecules. The effect is reminiscent of the discussion on the uniqueness of end groups in connection with Example 1.1. In the esterification of carboxylic acids, for example, the rate constants are different for acetic, propionic, and butyric acids, but constant for carboxyUc acids with 4-18 carbon atoms. This observation on nonpolymeric compounds has been generalized to apply to polymerization reactions as well. The latter are subject to several complications which are not involved in the study of simple model compounds, but when these complications are properly considered, the independence of reactivity on molecular size has been repeatedly verified. [Pg.278]

In this section we examine some examples of cross-linked step-growth polymers. The systems we shall describe are thermosetting polymers of considerable industrial importance. The chemistry of these polymerization reactions is more complex than the hypothetical AB reactions of our models. We choose to describe these commercial polymers rather than model systems which might conform better to the theoretical developments of the last section both because of the importance of these materials and because the theoretical concepts provide a framework for understanding more complex systems, even if they are not quantitatively successful. [Pg.323]

Oligomerization and Polymerization Reactions. One special feature of isocyanates is their propensity to dimerize and trimerize. Aromatic isocyanates, especially, are known to undergo these reactions in the absence of a catalyst. The dimerization product bears a strong dependency on both the reactivity and stmcture of the starting isocyanate. For example, aryl isocyanates dimerize, in the presence of phosphoms-based catalysts, by a crosswise addition to the C=N bond of the NCO group to yield a symmetrical dimer (15). [Pg.450]

Photopolymerization reactions are widely used for printing and photoresist appHcations (55). Spectral sensitization of cationic polymerization has utilized electron transfer from heteroaromatics, ketones, or dyes to initiators like iodonium or sulfonium salts (60). However, sensitized free-radical polymerization has been the main technology of choice (55). Spectral sensitizers over the wavelength region 300—700 nm are effective. AcryUc monomer polymerization, for example, is sensitized by xanthene, thiazine, acridine, cyanine, and merocyanine dyes. The required free-radical formation via these dyes may be achieved by hydrogen atom-transfer, electron-transfer, or exciplex formation with other initiator components of the photopolymer system. [Pg.436]

A number of dihydroquinolines have been prepared by treating aniline derivatives with acetone or mesityl oxide in the presence of iodine. In these cases aromatization to the fully unsaturated quinoline would require the loss of methane, a process known as the Riehm quinoline synthesis. Such Skraup/Doebner-von Miller-type reactions are often low yielding due to large amounts of competing polymerization. For example, aniline 37 reacts with mesityl oxide to give dihydroquinolines 39, albeit in low yield. ... [Pg.492]

The polymerization reaction starts hy protonating the olefin and forming a carhocation. For example, protonating propene gives isopropyl car-hocation. The proton is provided hy the ionization of phosphoric acid ... [Pg.89]

Free radical initiators can polymerize olefmic compounds. These chemical compounds have a weak covalent bond that breaks easily into two free radicals when subjected to heat. Peroxides, hydroperoxides and azo compounds are commonly used. For example, heating peroxybenzoic acid forms two free radicals, which can initiate the polymerization reaction ... [Pg.305]

Strong protonic acids can affect the polymerization of olefins (Chapter 3). Lewis acids, such as AICI3 or BF3, can also initiate polymerization. In this case, a trace amount of a proton donor (cocatalyst), such as water or methanol, is normally required. For example, water combined with BF3 forms a complex that provides the protons for the polymerization reaction. [Pg.306]

Polymeranalogous reactions considered above may be referred to as intramolecular condensation transformations since they are accompanied by elimination of low-molecular products. On the other hand, PCSs can be obtained via polymeranalogous transformations, principally intramolecular polymerization reactions . Thermal and chemical cyclization of poly(acrilonitrile) (PAN) is an example of processes of this type. It was demonstrated by a number of researchers216-225 that thermal transformations of PAN follow the scheme ... [Pg.11]

Many block and graft copolymer syntheses involving transformation reactions have been described. These involve preparation of polymeric species by a mechanism that leaves a terminal functionality that allows polymerization to be continued by another mechanism. Such processes are discussed in Section 7.6.2 for cases where one of the steps involves conventional radical polymerization. In this section, we consider cases where at least one of the steps involves living radical polymerization. Numerous examples of converting a preformed end-functional polymer to a macroinitiator for NMP or ATRP or a macro-RAFT agent have been reported.554 The overall process, when it involves RAFT polymerization, is shown in Scheme 9.60. [Pg.544]

Control systems can fail in many ways, and highly energetic reactions like the styrene polymerization in Examples 5.7 and 14.8 raise major safety concerns. The contents of the vessel are similar to napalm. Discuss ways of preventing accidents or of mitigating the effects of accidents. Is there one best method for avoiding a disastrous runaway ... [Pg.536]


See other pages where Polymerization reactions - examples is mentioned: [Pg.145]    [Pg.1451]    [Pg.1451]    [Pg.1699]    [Pg.975]    [Pg.669]    [Pg.145]    [Pg.1451]    [Pg.1451]    [Pg.1699]    [Pg.975]    [Pg.669]    [Pg.14]    [Pg.328]    [Pg.345]    [Pg.424]    [Pg.489]    [Pg.279]    [Pg.430]    [Pg.369]    [Pg.191]    [Pg.491]    [Pg.347]    [Pg.67]    [Pg.37]    [Pg.320]    [Pg.332]    [Pg.196]    [Pg.423]    [Pg.175]    [Pg.160]    [Pg.50]    [Pg.422]    [Pg.120]    [Pg.226]    [Pg.230]    [Pg.44]    [Pg.463]    [Pg.504]   


SEARCH



Examples reaction

Polymerization reaction

© 2024 chempedia.info