Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer tandem structure

At the early development of polymer solar cells, a planar p-n junction structure represented the mainstream in mimicking conventional silicon-based solar cells. However, the obtained devices demonstrated poor photovoltaic performances due to the long distance between the exciton and junction interface and insufficient light absorption due to the thin light absorber. It was not until 1995 that the dilemma was overcome with the discovery of a novel bulk heterojunction in which donor and acceptor form interpenetrated phases. Poly[2-methoxy-5-(2 -ethylhexyloxy)-p-phenylene vinylene] was blended with Ceo or its derivatives to form the bulk heterojunction. A much improved power conversion efficiency of 2.9% was thus achieved under the illumination of 20 mW/cm. (Yu et al., 1995). The emergence of the donor/acceptor bulk-heterojunction structure had boosted the photovoltaic performances of polymer solar cells. Currently, a maximal power conversion efficiency of 10.6% had been reported on the basis of synthesizing appropriate polymer materials and designing a tandem structure (You et al., 2013). The detailed discussions are provided in Chapter 5. [Pg.2]

Several desorphon and spray ionization methods can be used to convert S5mthehc polymers into intact molecular or quasimolecular ions (vide supra), whose exact m/z ratio identifies the composition of the polymer. For structural informahon about the polymer, the dissociation behavior or ion-molecule reactions of the polymer ions must be studied. Such reactions, which rarely take place during the soft ionization processes necessary to generate intact gas phase ions from synthetic macromolecules, are most conveniently assessed by tandem mass spectrometry (MS/MS). With MS/MS, a specific precursor ion is mass-selected, so that its reactivity can be investigated without perturbation from the other ions formed upon ionization. The reaction products of this ion are then mass-analyzed and collected in the MS/MS spectrum. MS/MS studies on polymer ions have so far focused on their spontaneous ("metastable") or collision-induced fragmentation. The fragments arising in these reactions are displayed in metastable ion (MI) or collisionally activated dissociation (CAD) spectra, respectively. Customarily, MI spectra acquired with a TOF mass analyzer have been named "postsource decay (PSD)" spectra similarly, CAD is often referred to as CID (collision-induced dissociation). ... [Pg.44]

As we have seen, the tandem arehiteeture represents a valuable path to increasing the effieieney of polymer tandem solar eells. However, this complex structure, where two subcells are optieally and eleetrieally connected, also represents a challenge when it eomes to the eorreet eharacterization... [Pg.331]

Figure 11.12 Device structure of the polymer tandem solar cells with PEDOT PSS (PHIOOO) modified by PEIE as the recombination layer. Reproduced from ref. 67. Figure 11.12 Device structure of the polymer tandem solar cells with PEDOT PSS (PHIOOO) modified by PEIE as the recombination layer. Reproduced from ref. 67.
LSIMS is a more suitable ionisation technique than FD for analysis of mixtures by means of tandem mass spectrometry, because of the higher ion currents generated from polymer additives using LSIMS. LSIMS/MS experiments may be used in conjunction with FD-MS as a screen to determine class, molecular weight and structure of mixtures of organic polymer additives. [Pg.372]

Selection of a suitable ionisation method is important in the success of mixture analysis by MS/MS, as clearly shown by Chen and Her [23]. Ideally, only molecular ions should be produced for each of the compounds in the mixture. For this reason, the softest ionisation technique is often the best choice in the analysis of mixtures with MS/MS. In addition to softness , selectivity is an important factor in the selection of the ionisation technique. In polymer/additive analysis it is better to choose an ionisation technique which responds preferentially to the analytes over the matrix, because the polymer extract often consists of additives as well as a low-MW polymer matrix (oligomers). Few other reports deal with direct tandem MS analysis of extracts of polymer samples [229,231,232], DCI-MS/MS (B/E linked scan with CID) was used for direct analysis of polymer extracts and solids [69]. In comparison with FAB-MS, much less fragmentation was observed with DCI using NH3 as a reagent gas. The softness and lack of matrix effect make ammonia DCI a better ionisation technique than FAB for the analysis of additives directly from the extracts. Most likely due to higher collision energy, product ion mass spectra acquired with a double-focusing mass spectrometer provided more structural information than the spectra obtained with a triple quadrupole mass spectrometer. [Pg.403]

Figure 26-33 Separation of enantiomers of eight p blocker drugs by micellar electrokinetic chromatography at pH 8.0 in a 120-cm capillary at 30 kV. Micelles were formed by a polymer surfactant containing L-leucinate substituents for chiral recognition. The structure of one compound is shown. [From C. Akbay. S, A. A. Rizvi. and S. A. Shamsi, "Simultaneous Enantiosepcration and Tandem UV-MS Detection of Eight p-Blockers in Micellar Electrokinetic Chromatography Using a Chiral Molecular Micelle Anal. Chem. 2005, 77.1672.]... Figure 26-33 Separation of enantiomers of eight p blocker drugs by micellar electrokinetic chromatography at pH 8.0 in a 120-cm capillary at 30 kV. Micelles were formed by a polymer surfactant containing L-leucinate substituents for chiral recognition. The structure of one compound is shown. [From C. Akbay. S, A. A. Rizvi. and S. A. Shamsi, "Simultaneous Enantiosepcration and Tandem UV-MS Detection of Eight p-Blockers in Micellar Electrokinetic Chromatography Using a Chiral Molecular Micelle Anal. Chem. 2005, 77.1672.]...
Banoub J.H., Benjelloun-Mlayah B., Ziarelli F., Joly N., Delmas M. Elucidation of the complex molecular structure of wheat straw lignin polymer by atmospheric pressure photoionization quadrupole time-of-flight tandem mass spectrometry. Rapid Communications in Mass Spectrometry 21 2867-2888 (2007). [Pg.141]

Figure 7.10 Tandem solar cell structure for polymer blend solar cells, based on the design demonstrated by Hadipour et al. (2006). In this all-solution-processed device, the top cell consists of a polymer PCBM bulk heterojunction with an absorption maximum of 550 nm and preferentially absorbs short-wavelength light, while the bottom cell is made from a bulk heterojunction of PCBM with a red-absortring polymer and absorbs longer-wavelength light. The composite gold-PEDOT PSS internal layer connects the two cells in... Figure 7.10 Tandem solar cell structure for polymer blend solar cells, based on the design demonstrated by Hadipour et al. (2006). In this all-solution-processed device, the top cell consists of a polymer PCBM bulk heterojunction with an absorption maximum of 550 nm and preferentially absorbs short-wavelength light, while the bottom cell is made from a bulk heterojunction of PCBM with a red-absortring polymer and absorbs longer-wavelength light. The composite gold-PEDOT PSS internal layer connects the two cells in...
To date, the limited use of the enantioselectivity of biocatalysts in polymerization conditions and the lengthy synthetic procedures required to prepare optically pure monomers have hampered full exploitation of chemo-enzymatic approaches in polymer chemistry. However, a combined multidisciplinary effort at the interface of biocatalysis, polymer chemistry and organic catalysis, will allow to convert methods well-established in organic chemistry such as tandem catalysis, to the field of polymer chemistry. Undoubtedly, in the near future the exploitation of the selectivity of enzymes and the advantages of chemo-enzymatic approaches in a wide variety of polymerization chemistries will be recognized. This may lead to a paradigm shift in polymer chemistry and allow a higher level of structural complexity in macromolecules, reminiscent to those found in Nature. [Pg.301]

Transparent polymer solar cells (i.e., polymer solar cells with transparent electrodes) can be easily fabricated based on inverted architecture and have important application in tandem architectures as well. We can form transparent solar cells by replacing the Al top electrode with 12 nm Au in the inverted structure. The J-V curves for this transparent polymer solar cell, with light incident from ITO and Au side, are shown in Figure 11.17. The difference between the two J-V curves is due to the partial loss by the reflection and absorption at the semitransparent Au electrode. To provide sufficient electrical conductance, Au layer thickness has to be sufficient and the optical loss at Au electrode becomes significant. However, the inverted solar cell structure has the V2O5 layer which is not only transparent but also provides effective protection to the polymer layer. A transparent conductive oxides electrode, such as ITO, can therefore be deposited without compromising device performance. [Pg.343]


See other pages where Polymer tandem structure is mentioned: [Pg.481]    [Pg.350]    [Pg.297]    [Pg.353]    [Pg.354]    [Pg.147]    [Pg.338]    [Pg.383]    [Pg.324]    [Pg.369]    [Pg.119]    [Pg.122]    [Pg.402]    [Pg.402]    [Pg.405]    [Pg.411]    [Pg.414]    [Pg.735]    [Pg.173]    [Pg.428]    [Pg.110]    [Pg.332]    [Pg.628]    [Pg.279]    [Pg.306]    [Pg.371]    [Pg.26]    [Pg.340]    [Pg.36]    [Pg.484]    [Pg.20]    [Pg.231]    [Pg.1269]    [Pg.126]    [Pg.633]    [Pg.633]    [Pg.5]    [Pg.17]   
See also in sourсe #XX -- [ Pg.353 , Pg.354 ]




SEARCH



Structure tandem

© 2024 chempedia.info