Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer Surfaces interaction with several

One of the problems faced with polymer systems is that of equilibrium. Not only may adsorbed polymers desorb during compression, but the polymer may not be able to achieve its equilibrium configuration for a given separation over the time-scale of the experiment. Several groups have thus built modified surface force apparatuses to perform viscoelastic measurements on confined films, not only to determine relaxation rates for grafted polymers, but also to determine the effect of confinement on the physical properties of the films and to study friction and lubrication (see Section 2.5 above). Storage and loss moduli can be extracted from the response to oscillations in the frequency range of approximately 10 to 10 Hz. Montfort and co-workers, for example, have used normal oscillations to study the viscoelasticity of polybutadiene films on metal surfaces in hydrocarbons (234, 235). At such sufficiently small separations that the polymers could interact with one another, the... [Pg.406]

The adhesion of metal and ink to polymers, and the adhesion of paint and other coatings to metal, are of vital importance in several technologies. Aluminum-to-alu-minum adhesion is employed in the aircraft industry. The strength and durability of an adhesive bond are completely dependent on the manner in which the adhesive compound interacts with the surfaces to which it is supposed to adhere this, in turn, often involves pretreatment of the surfaces to render them more reactive. The nature and extent of this reactivity are functions of the chemical states of the adhering surfaces, states that can be monitored by XPS. [Pg.27]

If such fillers are to be used, they should have a neutral or slightly alkaline pH, otherwise additives such as ethylene glycol and triethanolamine, which are preferentially adsorbed on the surface of the filler, should be used, preventing any undesirable interference reactions between the filler and the crosslinking peroxide. These additives must, however, always be added to the mix before the peroxide. With some mineral fillers, such as some types of clay, the polymer may be bound to the filler by means of silane treatment, and the surface of the filler becomes completely non-polar. Consequently, the interaction with the polymer matrix increases, while the adsorption of the crosslinking peroxide by the filler is severely suppressed. [Pg.152]

The characterization of the surface chemistry of the modified polymer is one step in understanding the mechanism for cells adhesion. The next crucial step is to determine the nature and extent of chemical interactions between the overlayer of interest and the modified polymer surface. This step presents a challenge because cmrently there are no techniques available with the sensitivity to characterize chemical interactions for an atomically thin buried interface. Several approaches have been used to analyze buried interfaces. Ion sputter depth profiling (typically done with Ar ions) in conjunction with XPS can be used to evaluate a buried interface for overlayers >10 nm [2]. [Pg.31]

Several different analytical and ultra-micropreparative CEC approaches have been described for such peptide separations. For example, open tubular (OT-CEC) methods have been used 290-294 with etched fused silicas to increase the surface area with diols or octadecyl chains then bonded to the surface.1 With such OT-CEC systems, the peptide-ligand interactions of, for example, angiotensin I-III increased with increasing hydrophobicity of the bonded phase on the capillary wall. Porous layer open tubular (PLOT) capillaries coated with anionic polymers 295 or poly(aspartic acid) 296 have also been employed 297 to separate basic peptides on the inner wall of fused silica capillaries of 20 pm i.d. When the same eluent conditions were employed, superior performance was observed for these PLOT capillaries compared to the corresponding capillary zone electrophoresis (HP-CZE) separation. Peptide mixtures can be analyzed 298-300 with OT-CEC systems based on octyl-bonded fused silica capillaries that have been coated with (3-aminopropyl)trimethoxysilane (APS), as well as with pressurized CEC (pCEC) packed with particles of similar surface chemistry, to decrease the electrostatic interactions between the solute and the surface, coupled to a mass spectrometer (MS). In the pressurized flow version of electrochromatography, a pLC pump is also employed (Figure 26) to facilitate liquid flow, reduce bubble formation, and to fine-tune the selectivity of the separation of the peptide mixture. [Pg.619]


See other pages where Polymer Surfaces interaction with several is mentioned: [Pg.6]    [Pg.176]    [Pg.645]    [Pg.218]    [Pg.249]    [Pg.202]    [Pg.339]    [Pg.49]    [Pg.337]    [Pg.353]    [Pg.133]    [Pg.197]    [Pg.315]    [Pg.62]    [Pg.61]    [Pg.374]    [Pg.182]    [Pg.524]    [Pg.522]    [Pg.459]    [Pg.366]    [Pg.90]    [Pg.945]    [Pg.951]    [Pg.1050]    [Pg.338]    [Pg.452]    [Pg.237]    [Pg.17]    [Pg.123]    [Pg.213]    [Pg.434]    [Pg.244]    [Pg.5]    [Pg.105]    [Pg.248]    [Pg.21]    [Pg.183]    [Pg.807]    [Pg.136]    [Pg.263]    [Pg.1680]    [Pg.97]    [Pg.36]   


SEARCH



Interacting Surface

Interaction with polymers

Polymers interactions

Polymers interactions with surfaces

Surface, interaction with

© 2024 chempedia.info