Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer solvent effects

For dilute solutions, one generally considers the solvent to be a continuum, and polymer-solvent interactions are not explicitly considered. As a result the terms contaimng the pair distribution functions (in Eqs. (7.19), (8.11), and (8.21)) are not needed, since polymer-polymer interactions occur only rarely. On the other hand, if one wishes to study polymer-solvent effects explicitly, then it will be necessary to consider in detail the terms containing the pair distribution function. [Pg.49]

There have been some attempts to compute nonlinear optical properties in solution. These studies have shown that very small variations in the solvent cavity can give very large deviations in the computed hyperpolarizability. The valence bond charge transfer (VB-CT) method created by Goddard and coworkers has had some success in reproducing solvent effect trends and polymer results (the VB-CT-S and VB-CTE forms, respectively). [Pg.259]

In a good solvent, the end-to-end distance is greater than the 1q value owing to the coil expansion resulting from solvent imbibed into the domain of the polymer. The effect is quantitatively expressed in terms of an expansion factor a defined by the relationship... [Pg.62]

The subscript 0 on 1 implies 0 conditions, a state of affairs characterized in Chap. 1 by the compensation of chain-excluded volume and solvent effects on coil dimensions. In the present context we are applying this result to bulk polymer with no solvent present. We shall see in Chap. 9, however, that coil dimensions in bulk polymers and in solutions under 0 conditions are the same. [Pg.112]

Since the 0 s are fractions, the logarithms in Eq. (8.38) are less than unity and AGj is negative for all concentrations. In the case of athermal mixtures entropy considerations alone are sufficient to account for polymer-solvent miscibility at all concentrations. Exactly the same is true for ideal solutions. As a matter of fact, it is possible to regard the expressions for AS and AGj for ideal solutions as special cases of Eqs. (8.37) and (8.38) for the situation where n happens to equal unity. The following example compares values for ASj for ideal and Flory-Huggins solutions to examine quantitatively the effect of variations in n on the entropy of mixing. [Pg.517]

It is only the contribution of AH to AG that we are discussing here, but we see the effect of this contribution-in the systems for which the approximation is valid-is that a solvent becomes less suitable to dissolve a polymer the greater the difference is between their 6 values. At best, when 61 = 62, the solvent effect is neutral. Cases for which a favorable specific interaction between solvent and polymer actually promotes solution are characterized by negative values of AH and are therefore beyond the capabilities of this model. [Pg.527]

Use of random flight statistics to derive rg for the coil assumes the individual segments exclude no volume from one another. While physically unrealistic, this assumption makes the derivation mathematically manageable. Neglecting this volume exclusion means that coil dimensions are underestimated by the random fight model, but this effect can be offset by applying the result to a solvent in which polymer-polymer contacts are somewhat favored over polymer-solvent contacts. [Pg.560]

Many ceUulosic derivatives form anisotropic, ie, Hquid crystalline, solutions, and cellulose acetate and triacetate are no exception. Various cellulose acetate anisotropic solutions have been made using a variety of solvents (56,57). The nature of the polymer—solvent interaction determines the concentration at which hquid crystalline behavior is initiated. The better the interaction, the lower the concentration needed to form the anisotropic, birefringent polymer solution. Strong organic acids, eg, trifluoroacetic acid are most effective and can produce an anisotropic phase with concentrations as low as 28% (58). Trifluoroacetic acid has been studied with cellulose triacetate alone or in combination with other solvents (59—64) concentrations of 30—42% (wt vol) triacetate were common. [Pg.297]

Chemical Properties. A combination of excellent chemical and mechanical properties at elevated temperatures result in high performance service in the chemical processing industry. Teflon PEA resins have been exposed to a variety of organic and inorganic compounds commonly encountered in chemical service (26). They are not attacked by inorganic acids, bases, halogens, metal salt solutions, organic acids, and anhydrides. Aromatic and ahphatic hydrocarbons, alcohols, aldehydes, ketones, ethers, amines, esters, chlorinated compounds, and other polymer solvents have Httle effect. However, like other perfluorinated polymers,they react with alkah metals and elemental fluorine. [Pg.375]

Experimental values of X have been tabulated for a number of polymer-solvent systems (4,12). Unfortunately, they often turn out to be concentration and molecular weight dependent, reducing their practical utility. The Flory-Huggins theory quahtatively predicts several phenomena observed in solutions of polymers, including molecular weight effects, but it rarely provides a good quantitative fit of data. Considerable work has been done subsequentiy to modify and improve the theory (15,16). [Pg.435]

One final point should be made. The observation of significant solvent effects on kp in homopolymerization and on reactivity ratios in copolymerization (Section 8.3.1) calls into question the methods for reactivity ratio measurement which rely on evaluation of the polymer composition for various monomer feed ratios (Section 7.3.2). If solvent effects arc significant, it would seem to follow that reactivity ratios in bulk copolymerization should be a function of the feed composition.138 Moreover, since the reaction medium alters with conversion, the reactivity ratios may also vary with conversion. Thus the two most common sources of data used in reactivity ratio determination (i.e. low conversion composition measurements and composition conversion measurements) are potentially flawed. A corollary of this statement also provides one explanation for any failure of reactivity ratios to predict copolymer composition at high conversion. The effect of solvents on radical copolymerization remains an area in need of further research. [Pg.361]

One of the most dramatic examples of a solvent effect on propagation taken from the early literature is for vinyl acetate polymerization.78,79 Kamachi el al.n reported a ca. 80-fold reduction in kp (30aC) on shifting from ethyl acetate to benzonilrile solvent (Table 8.1). Effects on polymer structure were also reported. Hatada ef a m conducted a H NMR study on the structure of the PVAc formed in various solvents. They found that PVAc (M n 20000) produced in ethyl acetate solvent has 0.7 branches/chain while that formed in aromatic solvents is essentially unbranched. [Pg.427]

The solvent in a bulk copolymerization comprises the monomers. The nature of the solvent will necessarily change with conversion from monomers to a mixture of monomers and polymers, and, in most cases, the ratio of monomers in the feed will also vary with conversion. For S-AN copolymerization, since the reactivity ratios are different in toluene and in acetonitrile, we should anticipate that the reactivity ratios are different in bulk copolymerizations when the monomer mix is either mostly AN or mostly S. This calls into question the usual method of measuring reactivity ratios by examining the copolymer composition for various monomer feed compositions at very low monomer conversion. We can note that reactivity ratios can be estimated for a single monomer feed composition by analyzing the monomer sequence distribution. Analysis of the dependence of reactivity ratios determined in this manner of monomer feed ratio should therefore provide evidence for solvent effects. These considerations should not be ignored in solution polymerization either. [Pg.430]

Studies on the reactions of small model radicals with monomers provide indirect support but do not prove the bootstrap effect.111 Krstina et ahL i showed that the reactivities of MMA and MAN model radicals towards MMA, S and VAc were independent of solvent. However, small but significant solvent effects on reactivity ratios are reported for MMA/VAc111 and MMA S 7 copolymerizations. For the model systems, where there is no polymer coil to solvate, there should be no bootstrap effect and reactivities are determined by the global monomer ratio [Ma0]/[Mb0].1j1... [Pg.431]

Equation (23) predicts a dependence of xR on M2. Experimentally, it was found that the relaxation time for flexible polymer chains in dilute solutions obeys a different scaling law, i.e. t M3/2. The Rouse model does not consider excluded volume effects or polymer-solvent interactions, it assumes a Gaussian behavior for the chain conformation even when distorted by the flow. Its domain of validity is therefore limited to modest deformations under 0-conditions. The weakest point, however, was neglecting hydrodynamic interaction which will now be discussed. [Pg.91]

According to our initial hypothesis, these anomalous effects are the experimental results occurring under kinetic control of conformational relaxation. Here conformational relaxation is exposed over its entire length to the influence of the electrochemical variables, the temperature, the polymer-polymer interactions, the polymer-solvent interactions, etc. These are the monitors that can be used to validate each new step of theoretical development during our attempt to integrate electrochemistry and polymer science. [Pg.376]

Figure47. Chronoamperometric responses to potential steps carried out using a polypyrrole electrode from -2000 to 300 mV vs. SCE for 50 s, in 0.1 M UCI04 solutions of different solvents. (Reprinted from H.-J. Grande, T. F. Otero, and I. Cantero, Conformational relaxation in conducting polymers Effect of the polymer-solvent interactions. 7. Non-Cryst. Sol. 235-237,619, 1998, Figs. 1-3, Copyright 1998. Reproduced with kind permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.)... Figure47. Chronoamperometric responses to potential steps carried out using a polypyrrole electrode from -2000 to 300 mV vs. SCE for 50 s, in 0.1 M UCI04 solutions of different solvents. (Reprinted from H.-J. Grande, T. F. Otero, and I. Cantero, Conformational relaxation in conducting polymers Effect of the polymer-solvent interactions. 7. Non-Cryst. Sol. 235-237,619, 1998, Figs. 1-3, Copyright 1998. Reproduced with kind permission of Elsevier Science-NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands.)...
Figure 8. Tubular plug-flow addition polymer reactor effect of the activation energy (E) of the initiator on the molecular weight-conversion relationship at constant frequency factor (k ). Each point along the curves represents an optimum initiator feed concentration-reactor jacket temperature combination and their values are all different. (In k = 26.494 In sec 0.0 mol % solvent)... Figure 8. Tubular plug-flow addition polymer reactor effect of the activation energy (E) of the initiator on the molecular weight-conversion relationship at constant frequency factor (k ). Each point along the curves represents an optimum initiator feed concentration-reactor jacket temperature combination and their values are all different. (In k = 26.494 In sec 0.0 mol % solvent)...
In this volume not all stress types are treated. Various aspects have been reviewed recently by various authors e.g. The effects of oxygen on recombinant protein expression by Konz et al. [2]. The Mechanisms by which bacterial cells respond to pH was considered in a Symposium in 1999 [3] and solvent effects were reviewed by de Bont in the article Solvent-tolerant bacteria in biocatalysis [4]. Therefore, these aspects are not considered in this volume. Influence of fluid dynamical stresses on micro-organism, animal and plant cells are in center of interest in this volume. In chapter 2, H.-J. Henzler discusses the quantitative evaluation of fluid dynamical stresses in various type of reactors with different methods based on investigations performed on laboratory an pilot plant scales. S. S. Yim and A. Shamlou give a general review on the effects of fluid dynamical and mechanical stresses on micro-organisms and bio-polymers in chapter 3. G. Ketzmer describes the effects of shear stress on adherent cells in chapter 4. Finally, in chapter 5, P. Kieran considers the influence of stress on plant cells. [Pg.178]


See other pages where Polymer solvent effects is mentioned: [Pg.121]    [Pg.112]    [Pg.112]    [Pg.1885]    [Pg.1886]    [Pg.1887]    [Pg.146]    [Pg.121]    [Pg.112]    [Pg.112]    [Pg.1885]    [Pg.1886]    [Pg.1887]    [Pg.146]    [Pg.548]    [Pg.437]    [Pg.631]    [Pg.492]    [Pg.542]    [Pg.116]    [Pg.428]    [Pg.432]    [Pg.591]    [Pg.596]    [Pg.606]    [Pg.610]    [Pg.195]    [Pg.115]    [Pg.18]    [Pg.54]    [Pg.222]    [Pg.555]   
See also in sourсe #XX -- [ Pg.172 , Pg.173 ]




SEARCH



Acrylic polymer radicals solvent effects

PPV Polymers and Solvent Effect

Polymer Solutions in Good Solvent Excluded Volume Effect

Polymer morphology, solvent effects

Polymer solid interface, solvent effects

Polymers in Binary Solvents. Cosolvency Effect Preferential Adsorption Phenomena

Solvent diffusion polymer effect

Solvent effect on polymers

Solvent effect polymer degradation

Solvent effects polymer coating stabilization

© 2024 chempedia.info