Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer physical forms

2 Solid grades suspension of bead polymerisation process [Pg.39]

This process exploits an imusual effect of the difference in solubility of acrylic acid monomer and polyacrylic acid in specific solvents. When products based on the process were first developed [4] and made commercially available, benzene was used as the polymerisation medium. The polymerisation reaction is initiated in a system containing a mixture of acrylic acid monomer and a cross-linking monomer (typically a multi-allyl ether derivative of sucrose or pentaeryrthritol) and, as the polymer network grows, the solubility in the solvent decreases until precipitation of the polymer network occurs in the form of a small particle size powder. The use of a cross-linking monomer results in a 3D network of [Pg.39]


Kumar, A. Srivastava, I.Y. Galaev, and B. Mattiasson, Smart polymers Physical forms and bioengineering applications. Progress in Polymer Science, 32 1205-1237,2007. [Pg.479]

Kumar A, Srivastava A, Galaev lY, Mattiasson B. 2007. Smart polymers physical forms bioengineering applications. Prog Polym Sci 32 1205 1237. [Pg.139]

Kumar, A., Siivastava, A., Galaev, I.Y, Mattiasson, B. Smart polymers physical forms and bioengineering applications. Prog. Polym. Sci. 32,1205-1237 (2007)... [Pg.363]

This is a fairly reasonable way to describe man-made amorphous polymers, which had not been given time to anneal. For polymers that form very quickly, a quick Monte Carlo search on addition can insert an amount of nonoptimal randomness, as is expected in the physical system. [Pg.186]

With the exception of glass fiber, asbestos (qv), and the specialty metallic and ceramic fibers, textile fibers are a class of soHd organic polymers distinguishable from other polymers by their physical properties and characteristic geometric dimensions (see Glass Refractory fibers). The physical properties of textile fibers, and indeed of all materials, are a reflection of molecular stmcture and intermolecular organization. The abiUty of certain polymers to form fibers can be traced to several stmctural features at different levels of organization rather than to any one particular molecular property. [Pg.271]

Terephthahc acid (TA) or dimethyl terephthalate [120-61 -6] (DMT) reacts with ethyleae glycol (2G) to form bis(2-hydroxyethyl) terephthalate [959-26-2] (BHET) which is coadeasatioa polymerized to PET with the elimination of 2G. Moltea polymer is extmded through a die (spinneret) forming filaments that are solidified by air cooling. Combinations of stress, strain, and thermal treatments are appHed to the filaments to orient and crystallize the molecular chains. These steps develop the fiber properties required for specific uses. The two general physical forms of PET fibers are continuous filament and cut staple. [Pg.327]

Physical Form. Eor compounders, physical form is an important characteristic. They prefer sohd, free-flowing, nondusty materials whereas polymer manufacturers prefer materials that are Hquid and easily emulsified. Undesirable are semicrystalline materials which may stratify during storage. Also, substances to be avoided are highly viscous Hquids and low melting resins which block upon storage. [Pg.246]

Gels are viscoelastic bodies that have intercoimected pores of submicrometric dimensions. A gel typically consists of at least two phases, a soHd network that entraps a Hquid phase. The term gel embraces numerous combinations of substances, which can be classified into the following categories (2) (/) weU-ordered lamellar stmctures (2) covalent polymeric networks that are completely disordered (2) polymer networks formed through physical aggregation that are predominantly disordered and (4) particular disordered stmctures. [Pg.248]

Practical methods for synthesis and elucidation of the optimum physical forms were developed at Du Pont (13). The violets fill the void in the color gamut when the inorganics are inadequate. The quinacridones may be used in most resins except polymers such as nylon-6,6, polystyrene, and ABS. They are stable up to 275°C and show excellent weatherabiUty. One use is to shade phthalocyanines to match Indanthrone Blue. In carpeting, the quinacridones are recommended for polypropylene, acrylonitrile, polyester, and nylon-6 filaments. Predispersions in plastici2ers ate used in thermoset polyesters, urethanes, and epoxy resins (14). [Pg.462]

Physical and Chemical Properties. The reaction of urea and formaldehyde forms a white soHd. The solubihty varies with the methylene urea polymer chain length longer-chain, higher molecular-weight UF polymers are less water-soluble than short-chain polymers. Physical properties of the methylene urea polymers which have been isolated are compared to urea in Table 1. [Pg.130]

There are at the present time many thousands of grades of commercial plastics materials offered for sale throughout the world. Only rarely are the properties of any two of these grades identical, for although the number of chemically distinct species (e.g. polyethylenes, polystyrenes) is limited, there are many variations within each group. Such variations can arise through differences in molecular structure, differences in physical form, the presence of impurities and also in the nature and amount of additives which may have been incorporated into the base polymer. One of the aims of this book is to show how the many different materials arise, to discuss their properties and to show how these properties can to a large extent be explained by consideration of the composition of a plastics material and in particular the molecular structure of the base polymer employed. [Pg.929]

The topic of molecular motion is an active one in experimental and theoretical polymer physics, and we may expect that in time the simple reptation model will be superseded by more sophisticated models. However, in the form presented here, reptation is likely to remain important as a semi-quantitative model of polymer motion, showing as it does the essential similarity of phenomena which have their origin in the flow of polymer molecules. [Pg.75]

Many other opportunities exist due to the enormous flexibility of the preparative method, and the ability to incorporate many different species. Very recently, a great deal of work has been published concerning methods of producing these materials with specific physical forms, such as spheres, discs and fibres. Such possibilities will pave the way to new application areas such as molecular wires, where the silica fibre acts as an insulator, and the inside of the pore is filled with a metal or indeed a conducting polymer, such that nanoscale wires and electronic devices can be fabricated. Initial work on the production of highly porous electrodes has already been successfully carried out, and the extension to uni-directional bundles of wires will no doubt soon follow. [Pg.73]

It should be realized that flammability of foams is a complex subject area and the "mechanism by which cellular polymers with different physical forms (cell sizes, etc.) lose heat at high temperatures have received surprisingly little attention" [19]. The... [Pg.142]

To produce a saleable polymer, the polymer produced should have a required Molecular weight, Molecular weight distribution and degree of branching. To obtain such a product various factors have to be taken into consideration. Factors like the nature of the monomer, the type of polymerisation mechanism chosen, the required physical form of the polymer and the viability of the process for industrial production dictate the physical conditions under which polymerisation is to be carried out. [Pg.14]

Copolymerisation is the process in which a mixture of two or more monomers gets polymerised to yield a product. The product obtained is known as a copolymer. A copolymer product contains some units of each type of monomer and is different from a physical mixture of individual polymer molecules formed by different monomers. It is not always possible to make a copolymer with any two or more monomers. When two monomers A and B are copolymerised the rate of polymerisation is determined by concentration of monomers. Four different propagation reaction can occur for copolymerisation of A and B. AA, AB, BB, BA". [Pg.218]


See other pages where Polymer physical forms is mentioned: [Pg.399]    [Pg.361]    [Pg.1565]    [Pg.39]    [Pg.399]    [Pg.361]    [Pg.1565]    [Pg.39]    [Pg.406]    [Pg.452]    [Pg.188]    [Pg.429]    [Pg.227]    [Pg.482]    [Pg.310]    [Pg.513]    [Pg.316]    [Pg.3]    [Pg.197]    [Pg.95]    [Pg.11]    [Pg.154]    [Pg.8]    [Pg.8]    [Pg.383]    [Pg.165]    [Pg.143]    [Pg.100]    [Pg.230]   


SEARCH



Physical form

Physics polymer

Polymers physical

© 2024 chempedia.info